Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Agrociencia
País:  Mexico
Título:  Does polymer-based encapsulation enhance performance of plant growth promoting microorganisms? A meta-analysis view
Autores:  Pacheco-Aguirre,J. Alberto
Ruíz-Sánchez,Esau
Ballina-Gómez,H. Salomón
Alvarado-López,C. Juan
Data:  2017-03-01
Ano:  2017
Palavras-chave:  Bacillus sp.
Inoculant
Microcapsules
Plant growth
Seed germination
Resumo:  Abstract Various studies have been undertaken to evaluate the effect of polymer-based encapsulation on performance of plant growth promoting microorganism. However there is no systematic analysis about the performance of these microorganisms when encapsulated in a polymer-based matrix. Relevant published papers were retrieved by conducting searches in Google Scholar, Only Library, Science Direct, Springer Journal, Taylor & Francis and Wiley Online Library. An examination of 117 articles was carried out and of those only 11 satisfied our criteria for inclusion into the meta-analysis. From these articles, we selected 41 cases to be evaluated. We used as keywords “microcapsules”, “capsules”, “microorganisms”, “growth”, “promoting”, “germination” “bacteria”, “plant”, “sodium alginate”, “antagonist” and “fungi”. We used sample size, means, standard deviations, F-test statistics, χ2 and/or p-value. Also gum and hardener concentration, and type of microencapsulated agent, microorganism and plant species were manipulated as factors; and measures of leaf, shoot and root, and seed germination were taken as responses variables. A general trend of enhanced performance was observed for microorganisms examined (except Trichoderma harzianum), also among plant species a positive trend was observed in Triticum sp., Vigna radiata and Gossypium sp. Plant growth showed differential responses; positive on root mass and shoot length but no effects on seed germination. Analysis of hardener and gum concentrations revealed that polymers containing 2 % of both compounds are ideally suited to enhance plant growth promoting microorganisms (PGPM) performance. We highlight beneficial effect of bacteria Bacillus subtilis when encapsulated in a polymeric gum. Positive effects of encapsulation for PGPM on plant root mass and shoot length were observed on Triticum sp., V. radiata and Gossypium sp. Hardener and gum concentrations of 2 % resulted in positive effects on plant growth promoting microorganism encapsulation performance.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000200173
Editor:  Colegio de Postgraduados
Formato:  text/html
Fonte:  Agrociencia v.51 n.2 2017
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional