Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  AgEcon
País:  United States
Título:  Disproving Causal Relationships Using Observational Data
Autores:  Bryant, Henry L.
Bessler, David A.
Haigh, Michael S.
Data:  2006-05-30
Ano:  2006
Palavras-chave:  Research Methods/ Statistical Methods
Resumo:  Economic theory is replete with causal hypotheses that are scarcely tested because economists are generally constrained to work with observational data. This article describes the use of causal inference methods for testing a hypothesis that one random variable causes another. Contingent on a sufficiently strong correspondence between the hypothesized cause and effect, an appropriately related third variable can be employed for such a test. The procedure is intuitive, and is easy to implement. The basic logic of the procedure naturally suggests strong and weak grounds for rejecting the hypothesized causal relationship. Monte Carlo results suggest that weakly-grounded rejections are unreliable for small samples, but reasonably reliable for large samples. Strongly-grounded rejections are highly reliable, even for small samples.
Tipo:  Conference Paper or Presentation
Idioma:  Inglês
Identificador:  21741

http://purl.umn.edu/21166
Editor:  AgEcon Search
Relação:  American Agricultural Economics Association>2006 Annual meeting, July 23-26, Long Beach, CA
Selected Paper
Formato:  25

application/pdf
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional