Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  SIDDIES Corridor: A Major East-West Pathway of Long-Lived Surface and Subsurface Eddies Crossing the Subtropical South Indian Ocean
Autores:  Dilmahamod, Ahmad Fehmi
Aguiar-gonzalez, B.
Penven, P.
Reason, C. J. C.
De Ruijter, W. P. M.
Malan, N.
Hermes, J. C.
Data:  2018-08
Ano:  2018
Palavras-chave:  South Indian Ocean
Eddy corridor
Surface and subsurface eddies
Long-lived eddies
Eddy demography
Heat
Freshwater fluxes
Resumo:  South Indian Ocean eddies (SIDDIES), originating from a high evaporation region in the eastern Indian Ocean, are investigated by tracking individual eddies from satellite data and co‐located Argo floats. A subsurface‐eddy identification method, based on its steric dynamic height anomaly, is devised to assign Argo profiles to surface eddies (surfSIDDIES) or subsurface eddies (subSIDDIES). These westward‐propagating, long‐lived features (>3 months) prevail over a preferential latitudinal band, forming a permanent structure linking the eastern to the western Indian Ocean, that we call the 'SIDDIES Corridor'. Key features have been revealed in the mean thermohaline vertical structure of these eddies. Anticyclonic SIDDIES are characterized by positive subsurface salinity anomalies, with subSIDDIES not exhibiting negative surface anomalies, as opposed to surfSIDDIES. Cyclonic subSIDDIES also occur, but their related salinity anomalies are weaker. SubSIDDIES exhibit two cores of different temperature polarities in their surface and subsurface levels. Cyclonic subSIDDIES have their cores at around 150‐200 m depth along the 25.4‐25.8 kg m− 3 potential density layer with anticyclonic subSIDDIES having their cores at 250‐300 m along the 26‐26.4 kg m− 3 density layer. The SIDDIES corridor acts as a zonal pathway for both eddy‐types to advect water masses and biogeochemical properties across the basin. This study provides a new insight on heat/salt fluxes, showing that 58% (32%) of the total heat eddy‐flux is ascribed to cyclonic (anticyclonic) subSIDDIES, respectively, in the eastern South Indian Ocean. Anticyclonic subSIDDIES have also been found to be the sole high‐saline water eddy‐conveyor towards the western Indian Ocean.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00440/55194/56670.pdf

DOI:10.1029/2018JC013828

https://archimer.ifremer.fr/doc/00440/55194/
Editor:  Amer Geophysical Union
Formato:  application/pdf
Fonte:  Journal Of Geophysical Research-oceans (2169-9275) (Amer Geophysical Union), 2018-08 , Vol. 123 , N. 8 , P. 5406-5425
Direitos:  2018. American Geophysical Union. All Rights Reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional