Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 16
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
イネの少分げつ突然変異体を用いた分げつ関連遺伝子の同定と機能解析 OAK
加藤, 清明; KATO, KIYOAKI.
2006年度~2008年度科学研究費補助金基盤研究(C) 研究成果報告書18580002
Palavras-chave: 植物分子育種.
Ano: 2009 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/2747
Imagem não selecionada

Imprime registro no formato completo
イネABCトランスポーターRcn1/OsABCG5の根における機能解析 OAK
嬉, 杏奈; 古川, 薫; 得字, 圭彦; 高牟礼, 逸朗; 加藤, 清明.
平成21年度年次講演会一般講演
Ano: 2009 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/2737
Imagem não selecionada

Imprime registro no formato completo
小麦の穂発芽とその対策 OAK
内野, 紀彦; 加藤, 清明; 三浦, 秀穂.
Palavras-chave: 小麦; DNAマーカー; 穂発芽.
Ano: 2004 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/862
Imagem não selecionada

Imprime registro no formato completo
コムギのWxタンパク質欠失系統における小麦粉特性の地域と年次変動 OAK
長, 学; 柳沢, 朗; 菅原, 章人; 加藤, 清明; 三浦, 秀穂; Osa, M; Yanagisawa, A; Sugawara, A; Kato, K; Miura, H.
Palavras-chave: Triticum aestivum L.; Wxタンパク質; アミロース含量; 粗蛋白質含量; 糊化特性; 遺伝子型×環境の相互作用; Wx protein; Amylose content; Protein content; Starch-pasting property; Genotype x environment interaction.
Ano: 2002 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/117
Imagem não selecionada

Imprime registro no formato completo
寒冷地におけるイネ科作物のバイオマス生産性の制御機構の解明を目指して : イネの分げつ伸長のコントロール OAK
加藤, 清明.
植物のバイオマスを決定する要因に枝分かれ(イネ科植物では分げつ)がある。 枝分かれは、腋芽(分げつ芽)の形成とそれに続く伸長の2 段階で制御される。 植物は、周囲の環境に応答した遺伝子発現とタンパク質合成、そしてオーキシン、サイトカイニン、ストリゴラクトンなどの植物ホルモンの相互作用により分げつ芽の伸長を制御するものと考えられている。例えば、伸長抑制にはたらく転写調節因子FC1(OsTB1)は、これら3 種の植物ホルモンの下流で統合因子としてはたらくことが知られている (Minakuchi et al., 2010)。これらの分げつ伸長経路の解明には、イネの枝分かれの多い多分げつ突然変異体が利用されてきた(Umehara et al., 2010)。我々の研究グループでは、枝分かれの少なくなったイネの少分げつ突然変異体を利用して分げつ伸長経路の理解を深めたいと考えている。これまでに、50 系統あまりの少分げつ突然変異体を選抜し、このうち、遺伝子分析と対立性検定により6 種類の劣性遺伝子rcn1 からrcn6 を報告した(高牟礼ら 1999)。二重変異体の解析から、少なくともこれら6 種の遺伝子が、ストリゴラクトンおよび統合因子FC1 を介した経路とは独立にはたらくことがわかった(Yasuno et al., 2007; Ariyaratne et al., 2009;未発表)。rcn1 は、ABC タンパク質サブグループG に属するOsABCG5 をコード し、このサブグループで最初に報告されたショウジョウバエの白眼突然変異体の原因遺伝子であるwhite タンパク質(P10090)と39.9%の類似性を示した(Yasuno et al., 2009)。ABCG...
Ano: 2011 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/3057
Imagem não selecionada

Imprime registro no formato completo
コムギ種子休眠性QTL、QPhs.ocs-3A1の座乗位置の決定 OAK
前川, 穂菜美; 大西, 一光; 加藤, 清明; 中村, 信吾; 三浦, 秀穂.
平成21年度年次講演会一般講演
Ano: 2009 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/2740
Imagem não selecionada

Imprime registro no formato completo
コムギ穂発芽関連遺伝子群の解析による選抜技術の開発 OAK
内野, 紀彦; 加藤, 清明; 三浦, 秀穂; Uchino, Norihiko; Kato, Kiyoaki.
Ano: 2003 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/2152
Imagem não selecionada

Imprime registro no formato completo
イネABCタンパク質Gサブファミリーのストレスおよび植物ホルモン応答性 OAK
松田, 修一; 小森, のぞみ; 古川, 薫; 船引, 厚志; 得字, 圭彦; 高牟礼, 逸朗; 加藤, 清明.
平成23年8月6日開催(帯広) 平成23年度 日本農芸化学会北海道支部夏期シンポジウム「十勝がはぐくむ農芸化学」ポスターセッションの講演要旨  
Ano: 2011 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/3056
Imagem não selecionada

Imprime registro no formato completo
分子マーカーによるコムギ5A染色体の連鎖分析 OAK
加藤, 清明.
Ano: 1996 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/558
Imagem não selecionada

Imprime registro no formato completo
トウモロコシ法によるコムギ半数体作出頻度におよぼす5Aおよび5B染色体の影響 OAK
伊藤, 葉子; 佐藤, 直美; 加藤, 清明; 三浦, 秀穂; ITO, Yohko; SATO, Naomi; KATO, Kiyoaki; MIURA, Hideho.
Palavras-chave: 胚培養; 半数体; トウモロコシ法; コムギ; Cmbryo culture; Haploid; Maize method; Wheat.
Ano: 1997 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/1309
Imagem não selecionada

Imprime registro no formato completo
コムギの染色体欠失系統を用いた5A染色体長腕の量的遺伝子座分析 OAK
秋山, 雅世; 三浦, 秀穂; 加藤, 清明; 沢田, 壮兵; AKIYAMA, Masayo; MIURA, Hideho; Kato, Kiyoaki; SAWADA, Souhei.
Palavras-chave: 染色体欠失系統; 量的遺伝子座; RFLP; コムギ; Chromosome deletion stock; QTL; RELP; Wheat.
Ano: 1998 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/1293
Imagem não selecionada

Imprime registro no formato completo
The rice RCN1/OsABCG5 mutation is associated with root development in response to nutrient shortage OAK
Ureshi, An-na; Matuda, Shuichi; Ohashi, Emiko; Onishi, Kazumitsu; Takamure, Itsuro; Kato, Kiyoaki; 大西, 一光; 加藤, 清明.
Plants constantly sense changes in their environment. When nutrient elements are scarce, plants often allocate a greater proportion of their biomass to the root system. In the present study, we characterized the early root development of rice reduced culm number (rcn) mutants under standard growth conditions. Short lateral root length was consistent in five rcn mutants, and the remaining root traits varied between the rcn mutants. Subsequently, we characterized the effects of rcn1 mutation in response to nutrient shortage. Root development, involving the elongation of seminal, crown, and lateral roots and branching of the lateral roots, was promoted in wild type in response to nutrient shortage. However, in rcn1 mutants, crown root elongation was constant...
Palavras-chave: Nutrient shortage; RCN1/OsABCG5; Reduced culm number; Rice; Root architecture.
Ano: 2012 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/3823
Imagem não selecionada

Imprime registro no formato completo
Gene silencing of barley P23k involved in secondary wall formation causes abnormal tiller formation and intercalary elongation OAK
Oikawa, Ai; Nagai, Kazuya; Kato, Kiyoaki; Kidou, Shin-ichiro; 加藤, 清明.
P23k is a monocot-unique protein that is highly expressed in barley. Our previous loss-of-function studies in barley leaves indicated that P23k, localized to tissues where cell wall polysaccharides accumulate, might contribute to secondary wall formation in the leaf. However, the P23k loss-of-function analysis was limited to the leaf, which is a vegetative organ. Considering the involvement of P23k in secondary wall formation, a dramatically altered phenotype is expected in the stem of P23k gene-silenced barley, where marked secondary wall deposition occurs during the reproductive growth stage. To test this hypothesis, barley striped mosaic virus-based virus-induced gene silencing of P23k was performed. Abnormal tiller formation and arrested intercalary...
Palavras-chave: Hordeum vulgare P23k virus-induced gene silencing secondary wall formation (1 3; 1 4)-β-D-glucan tiller intercalary elongation.
Ano: 2009 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/2692
Imagem não selecionada

Imprime registro no formato completo
イネのシュート伸長を制御するABCトランスポーターRCN1の低温応答性 OAK
古川, 薫; 松田, 修一; 小森, のぞみ; 得字, 圭彦; 高牟礼, 逸朗; 加藤, 清明.
平成23年8月6日開催(帯広) 平成23年度 日本農芸化学会北海道支部夏期シンポジウム「十勝がはぐくむ農芸化学」ポスターセッション講演要旨
Ano: 2011 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/3055
Imagem não selecionada

Imprime registro no formato completo
Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs OAK
Kottearachchi, NS; Uchino, N.; Kato, Kiyoaki; Miura, Hideho; 加藤, 清明; 三浦, 秀穂.
White-grained wheat cultivars have long been recognized to be less resistant to preharvest sprouting (PHS) than the red-grained ones. Previously two QTLs for grain dormancy, QPhs.ocs-3A.1 (QPhs-3AS) and QPhs.ocs-4A.1 (QPhs-4AL) were identified in a highly dormant Japanese red wheat, Zenkoujikomugi (Zen). Aiming at improvement of PHS tolerance in white-grained wheat, the introgression effect of these two QTLs in a white-grained population consisting of 40 recombinant inbred lines (RILs) developed from a cross between Zen and white-grained Spica was examined here. Random 20 RILs with red grains were also developed from the same cross and used as a control population. The RILs were grown in the field and in the glasshouse to evaluate the grain dormancy by...
Palavras-chave: Grain dormancy; Molecular marker; QTL; Triticum aestivum; White-grained wheat.
Ano: 2006 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/714
Imagem não selecionada

Imprime registro no formato completo
イネ幼苗期の低温応答遺伝子の分子遺伝学的解析 OAK
加藤, 清明.
Ano: 2004 URL: http://ir.obihiro.ac.jp/dspace/handle/10322/616
Registros recuperados: 16
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional