Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  106
País:  Thailand
Título:  แบบจำลองการเจริญเติบโตและผลผลิตของถั่วเขียว โดยใช้โครงข่ายประสาทเทียม
Mungbean growth and yield models using artificial neural network
Autores:  Supatsorn Kumbor
Hatsachai Boonjung
Arthit Srikaew
Data:  2016-02-25
Ano:  2014
Palavras-chave:  Mungbean
Artificial neural network
Model
ถั่วเขียว
โครงข่ายประสาทเทียม
แบบจำลองโครงข่ายประสาทเทียม
ผลผลิต
Resumo:  Most of crop modeling is mechanistic model whereas the objective of this study was to predict mungbean growth and yield by artificial neural network (ANN). The experiment was 2 varieties (SUT1 and KPS2) x 2 water levels (rainfed and irrigation) x 3 fertilizer levels (12-24-12 rate 0, 15 and 30kg./rai) factorial experiment in RCBD 4 blocks growing for 2 seasons (no rainfed in the 2nd season). Data was collected for 10 replications in each plot. Using 560 sets of data from fertilizer rate of 0 and 30 kg/rai trained the ANN model by back propagation algorithm. The input variables were variety, fertilizer, irrigations, seasonal, growing degree day, rainfall, solar radiation and day after planting. The rest of 280 sets of data (only 15 kg/rai of fertilizer) were used to validate performances of the model including coefficient of determination (r2), root mean square error, (RMSE) and agreement of index (IA). The ANN model predicted mungbean height quite accurate but under estimated the number of nodes and the number of compound leaf of young mungbean and accuracy increased with age. The prediction of main branches and yield were under estimated. The neuron network could be used to predict the growth and yield of mungbean but need more data to train the model for more accuracy.

แบบจำลองพืชส่วนใหญ่เป็นแบบ mechanistic model แต่การศึกษานี้ต้องการใช้โครงข่ายประสาทเทียมจำลองการเจริญเติบโตและผลผลิตของถั่วเขียว และทดสอบผลการทำนาย ทำการทดลองปลูกถั่วเขียวแบบแฟกตอเรียล 2 พันธุ์ (มทส.1 และกำแพงแสน 2) x 2 ระดับการให้น้ำ (น้ำฝนและให้น้ำ) x 3 ระดับปุ๋ย (สูตร 12-24-12 อัตรา 0, 15 และ 30 กก./ไร่) วางแผนแบบ RCBD มี 4 ซ้ำ ปลูก 2 ฤดู (ฤดูแล้งให้น้ำอย่างเดียว) เก็บข้อมูลแต่ละแปลงย่อย 10 ซ้ำ นำข้อมูลทั้งหมดเฉพาะอัตราปุ๋ย 0 และ 30 กก./ไร่ จำนวน 560 ชุด เพื่อฝึกสอนโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับ โดยตัวแปรน้ำเข้า ประกอบด้วย พันธุ์ อัตราปุ๋ย การให้น้ำ ฤดูกาลปลูก อุณหภูมิสะสม ปริมาณน้ำฝน ความเข้มแสง และจำนวนวันหลังปลูก นำข้อมูลที่เหลืออีก 280 ชุด (เฉพาะอัตราปุ๋ย 15 กก./ไร่) มาทดสอบการทำนาย และวัดประสิทธิภาพของการทำนายโดยใช้ค่าสัมประสิทธิ์กำหนด (coefficient of determination, r2) รากที่สองของความคลาดเคลื่อนกำลังสองเฉลี่ย (root mean square error, RMSE) และค่าการยอมรับได้ (agreement of index, IA) จากการศึกษาพบว่าแบบจำลองโครงข่ายประสาทเทียมมีประสิทธิภาพมากในการทำนายความสูง แต่ทำนายจำนวนข้อและใบประกอบได้ต่ำกว่าค่าสังเกตเมื่อต้นถั่วเขียวยังเล็ก และทำนายได้แม่นยำมากขึ้นเมื่อถั่วเขียวอายุมากขึ้น ส่วนการทำนายจำนวนกิ่งหลักและผลผลิตค่อนข้างต่ำกว่าค่า สังเกต หากต้องการที่จะนำไปประยุกต์ใช้เพื่อทำนายการเจริญเติบโตและผลผลิตของถั่วเขียว ควรต้องเพิ่มความแม่นยำให้กับแบบจำลองด้วยการเพิ่มจำนวนชุดข้อมูลเพื่อเพิ่มการเรียนรู้ของแบบจำลองโครงข่ายประสาทเทียมก่อนนำไปใช้ประโยชน์
Tipo:  Collection
Idioma:  Thailandês
Identificador:  ISSN 0125-0485

http://anchan.lib.ku.ac.th/agnet/handle/001/5840

Khon Kaen Agriculture Journal (Thailand), ISSN 0125-0485, 2014, V.42, Sup 1, p. 63-68

แก่นเกษตร, ISSN 0125-0485, 2557, ปีที่ 42, ฉบับพิเศษ 1, หน้า 63-68
Direitos:  ลิขสิทธิ์เป็นของเจ้าของบทความแต่เพียงผู้เดียว

สงวนลิขสิทธิ์ตามพระราชบัญญัติลิขสิทธิ์ พ.ศ. 2537

เอกสารนี้สงวนไว้สำหรับการใช้งานเพื่อการศึกษาเท่านั้น ไม่อนุญาตให้นำไปใช้ประโยชน์ด้านการค้า ไม่ว่ากรณีใดๆ ทั้งสิ้น อีกทั้งห้ามมิให้ดัดแปลงเนื้อหา และต้องอ้างอิงถึงเจ้าของเอกสารทุกครั้งที่มีการนำไปใช้
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional