Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  CIGR Journal
País:  China
Título:  Modelling Nonlinear Daily Evapotranspiration using Variable Infiltration Capacity Model and Artificial Neural Network
Autores:  Adamala, Sirisha
Data:  2018-06-18
Ano:  2018
Resumo:  Evapotranspiration (ET) is a key variable for hydrologic, climatic and agricultural studies. Accurate quantification of this variable is of utmost importance for irrigation management and crop productivity. With the availability of only meteorological variables in climatic stations, reference gross evapotranspiration (ETo) estimation is becoming a challenging task. Hence, there is a scope to estimate the ETo using various physical and empirical methods. Among physical methods, FAO-56 PM method is best and Artificial Neural Network (ANN) models are accurate empirical methods. Further, ETo can also be estimated using a water budget approach i.e. variable infiltration capacity (VIC) model, which accounts for the sub-grid variability of land use and land cover and soil moisture in a better way. In this study, the ETo was estimated by two different methods, namely, VIC and ANN for Mohanpur climatic location in India. The results reveal that VIC- ETo showed the correlation coefficient, r = 0.853, coefficient of determination, R2 = 0.727 and index of agreement, d = 0.924; while ANN models showed better agreement with r = 0.999, R2 = 0.998 and d = 0.999 with the FAO-56 PM method. Hence, it is concluded that the ANN showed better results as compared to VIC model for ETo estimation in Mohanpur climatic location.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.cigrjournal.org/index.php/Ejounral/article/view/4342
Editor:  International Commission of Agricultural and Biosystems Engineering
Relação:  http://www.cigrjournal.org/index.php/Ejounral/article/view/4342/2690
http://www.cigrjournal.org/index.php/Ejounral/article/downloadSuppFile/4342/1749
Formato:  application/pdf
Fonte:  Agricultural Engineering International: CIGR Journal; Vol 20, No 1 (2018): CIGR Journal; 32-39

1682-1130
Direitos:  Copyright (c) 2018 Agricultural Engineering International: CIGR Journal
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional