Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Repositório Alice
País:  Brazil
Título:  Annual cropland mapping using data mining and OLI Landsat-8.
Autores:  OLDONI, L. V.
CATTANI, C. E. V.
MERCANTE, E.
JOHANN, J. A.
ANTUNES, J. F. G.
ALMEIDA, L.
Data:  2019-11-22
Ano:  2019
Palavras-chave:  Árvore de decisão
Métricas temporais de NDVI
Mineração de dados
Séries temporais
Decision tree
NDVI temporal metrics
Random forest
Data mining
Normalized difference vegetation index
Time series analysis
Resumo:  ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%.

bitstream/item/205238/1/AP-Annual-cropland.pdf
Tipo:  Artigo em periódico indexado (ALICE)
Idioma:  Inglês
Identificador:  20199

http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915

http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958
Editor:  Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019.
Relação:  Embrapa Informática Agropecuária - Artigo em periódico indexado (ALICE)
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional