Registro completo |
Provedor de dados: |
Anais da ABC (AABC)
|
País: |
Brazil
|
Título: |
Weak convergence under nonlinearities
|
Autores: |
MOREIRA,DIEGO R.
TEIXEIRA,EDUARDO V. O.
|
Data: |
2003-03-01
|
Ano: |
2003
|
Palavras-chave: |
Weak continuity
Nonlinearities
Nemytskii operator
|
Resumo: |
In this paper, we prove that if a Nemytskii operator maps Lp(omega, E) into Lq(omega, F), for p, q greater than 1, E, F separable Banach spaces and F reflexive, then a sequence that converge weakly and a.e. is sent to a weakly convergent sequence. We give a counterexample proving that if q = 1 and p is greater than 1 we may not have weak sequential continuity of such operator. However, we prove that if p = q = 1, then a weakly convergent sequence that converges a.e. is mapped into a weakly convergent sequence by a Nemytskii operator. We show an application of the weak continuity of the Nemytskii operators by solving a nonlinear functional equation on W1,p(omega), providing the weak continuity of some kind of resolvent operator associated to it and getting a regularity result for such solution.
|
Tipo: |
Info:eu-repo/semantics/article
|
Idioma: |
Inglês
|
Identificador: |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652003000100002
|
Editor: |
Academia Brasileira de Ciências
|
Relação: |
10.1590/S0001-37652003000100002
|
Formato: |
text/html
|
Fonte: |
Anais da Academia Brasileira de Ciências v.75 n.1 2003
|
Direitos: |
info:eu-repo/semantics/openAccess
|