Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Anais da ESALQ
País:  Brazil
Título:  Contribuições à teoria da genética em populações
Autores:  Brieger,F. G.
Data:  1948-01-01
Ano:  1948
Resumo:  1) O equilíbrio em populações, inicialmente compostas de vários genotipos depende essencialmente de três fatores: a modalidade de reprodução e a relativa viabilidade e fertilidade dos genotipos, e as freqüências iniciais. 2) Temos que distinguir a) reprodução por cruzamento livre quando qualquer indivíduo da população pode ser cruzado com qualquer outro; b) reprodução por autofecundação, quando cada indivíduo é reproduzido por uma autofecundação; c) finalmente a reprodução mista, isto é, os casos intermediários onde os indivíduos são em parte cruzados, em parte autofecundados. 3) Populações heterozigotas para um par de gens e sem seleção. Em populações com reprodução cruzada se estabelece na primeira geração um equilíbrio entre os três genotipos, segundo a chamada regra de Hardy- Weinberg. Inicial : AA/u + Aa/v aa/u = 1 Equilibirio (u + v/2)² + u + v/2 ( w + v/2) + (w + v/2)² = p2 + 2 p o. q o. + q²o = 1 Em populações com autofecundação o equilíbrio será atingido quando estiverem presentes apenas os dois homozigotos, e uma fórmula é dada que permite calcular quantas gerações são necessárias para atingir aproximadamente este resultado. Finalmente, em populações com reprodução mista, obtemos um equilíbrio com valores intermediários, conforme Quadro 1. Frequência Genotipo Inicial mº Geração Final AA u u + 2m-1v / 2m+1 u + 1/2v Aa v 2/ 2m+2 v - aa w w + 2m - 1/ 2m + 1 v w + 1/2 v 4) Os índices de sobrevivencia. Para poder chegar a fórmulas matemáticas simples, é necessário introduzir índices de sobrevivência para medir a viabilidade e fertilidade dos homozigotos, em relação à sobrevivência dos heterozigotos. Designamos a sobrevivência absoluta de cada um dos três genotipos com x, y e z, e teremos então: x [ A A] : y [ Aa] : z [ aa] = x/y [ A A] : [ Aa] : z/ y [aa] = R A [ AA] : 1 [Aa] : Ra [aa] É evidente que os índices R poderão ter qualquer valor desde zero, quando haverá uma eliminação completa dos homozigotos, até infinito quando os heterozigotos serão completamente eliminados. Os termos (1 -K) de Haldane e (1 -S) ou W de Wright não têm esta propriedade matemática, podendo variar apenas entre zero e um. É ainda necessário distinguir índices parciais, de acordo com a marcha da eliminação nas diferentes fases da ontogenia dos indivíduos. Teremos que distinguir em primeiro lugar entre a eliminação durante a fase vegetativa e a eliminação na fase reprodutiva. Estas duas componentes são ligadas pela relação matemática. R - RV . RR 5) Populações com reprodução cruzada e eliminação. - Considerações gerais. a) O equilibrio final, independente da freqüência inicial dos genes e dos genotipos para valores da sobrevivência diferentes de um, é atingido quando os gens e os genotipos estão presentes nas proporções seguintes: (Quadro 2). po / qo = 1- ro / 1-Ra [AA] (1 - Ro)² . Rav [ Aa] = 2(1 - Ra) ( 1 - Ra) [a a} = ( 1 - Ra)² . RaA b) Fórmulas foram dadas que permitem calcular as freqüências dos genotipos em qualquer geração das populações. Não foi tentado obter fórmulas gerais, por processos de integração, pois trata-se de um processo descontínuo, com saltos de uma e outra geração, e de duração curta. 6) Populações com reprodução cruzada e eliminação. Podemos distinguir os seguintes casos: a) Heterosis - (Quadro 3 e Fig. 1). Ra < 1; Ra < 1 Inicial : Final : p (A)/q(a) -&gt; 1-ra/1-ra = positivo/zero = infinito Os dois gens e assim os três genotipos zigóticos permanecem na população. Quando as freqüências iniciais forem maiores do que as do equilíbrio elas serão diminuidas, e quando forem menores, serão aumentadas. b) Gens recessivos letais ou semiletais. (Quadro 1 e Fig. 2). O equilíbrio será atingido quando o gen, que causa a redução da viabilidade dos homozigotos, fôr eliminado da população. . / c) Gens parcialmente dominantes semiletais. (Quadro 5 e Fig. 3). Rª ; Oz Ra < 1 Inicial : Equilibrio biológico Equilíbrio Matemático pa(A)/q(a) -&gt; positivo /zero -&gt; 1- Rq/ 1-Ra = positivo/negativo d) Genes incompatíveis. Ra &gt; 1 ; Ra &gt; 1; Ra &gt; Ra Equílibrio/biológico p (A)/ q(a) -&gt; positivo/zero Equilibrio matemático -&gt; positivo/ zero -&gt; zero/negativo -&gt; 1-Ra/1 - Ra = negativo/negativo Nestes dois casos devemos distinguir entre o significado matemático e biológico. A marcha da eliminação não pode chegar até o equilíbrio matemático quando um dos gens alcança antes a freqüência zero, isto é, desaparece. Nos três casos teremos sempre uma eliminação relativamente rápida de um dos gens «e com isso do homozigoto respectivo e dos heterozigotòs. e) Foram discutidos mais dois casos especiais: eliminação reprodutiva diferencial dos dois valores do sexo feminino e masculino, -e gens para competição gametofítica. (Quadros 6 e 7 e Figs. 4 a 6). 7) População com autofecundação e seleção. O equilíbrio será atingido quando os genotipos estiverem presentes nas seguintes proporções: (Quadro 8); [AA] ( 0,5 - Ra). R AV [Aa] = 4. ( 0,5 - Ra) . (0.5 -R A) [aa] ( 0,5 - R A) . Rav Também foram dadas fórmulas que permitem calcular as proporções genotípicas em cada geração e a marcha geral da eliminação dos genotipos. 8)Casos especiais. Podemos notar que o termo (0,5 -R) nas fórmulas para as populações autofecundadas ocupa mais ou menos a mesma importância do que o termo (1-R) nas fórmulas para as populações cruzadas. a) Heterosis. (Quadro 9 e Fig. 7). Quando RA e Ra têm valores entre 0 e 0,5, obtemos o seguinte resultado: No equilíbrio ambos os gens estão presentes e os três heterozigotos são mais freqüentes do que os homozigotos. b) Em todos os demais casos, quando RA e Ra forem iguais ou maiores do que 0,5, o equilíbrio é atingido quando estão representados na população apenas os homozigotos mais viáveis e férteis. (Quadro 10). 9) Foram discutidos os efeitos de alterações dos valores da sobrevivência (Fig. 9), do modo de reprodução (Fig. 10) e das freqüências iniciais dos gens (Fig. 8). 10) Algumas aplicações à genética aplicada. Depois de uma discussão mais geral, dois problemas principais foram tratados: a) A homogeneização: Ficou demonstrado que a reprodução por cruzamento livre representa um mecanismo muito ineficiente, e que se deve empregar sempre ou a autofecundação ou pelo menos uma reprodução mista com a maior freqüência possível de acasalamentos consanguíneos. Fórmulas e dados (Quadro 11 e 12), permitem a determinação do número de gerações necessárias para obter um grau razoável de homozigotia- b) Heterosis. Existem dois processos, para a obtenção de um alto grau de heterozigotia e com isso de heterosis: a) O método clássico do "inbreeding and outbreeding". b) O método novo das populações balançadas, baseado na combinação de gens que quando homozigotos dão urna menor sobrevivência do que quando heterozigotos. 11) Algumas considerações sobre a teoria de evolução: a) Heterosis. Os gens com efeito "heterótico", isto é, nos casos onde os heterozigotos s mais viáveis e férteis, do que os homozigotos, oferecem um mecanismo especial de evolução, pois nestes casos a freqüência dos gens, apesar de seu efeito negativo na fase homozigota, tem a sua freqüência aumentada até que seja atingido o valor do equilíbrio. b) Gens letais e semiletais recessivos. Foi demonstrado que estes gens devem ser eliminados automáticamente das populações. Porém, ao contrário do esperado, não s raros por exemplo em milho e em Drosophila, gens que até hoje foram classificados nesta categoria. Assim, um estudo detalhado torna-se necessário para resolver se os heterozigotos em muitos destes casos não serão de maior sobrevivência do que ambos os homozigotos, isto é, que se trata realmente de genes heteróticos. c) Gens semiletais parcialmente dominantes. Estes gens serão sempre eliminados nas populações, e de fato eles são encontrados apenas raramente. d) Gens incompatíveis. São também geralmente eliminados das populações. Apenas em casos especiais eles podem ter importância na evolução, representando um mecanismo de isolamento.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Português
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0071-12761948000100003
Editor:  Universidade de São Paulo

Escola Superior de Agricultura
Relação:  10.1590/S0071-12761948000100003
Formato:  text/html
Fonte:  Anais da Escola Superior de Agricultura Luiz de Queiroz v.5 1948
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional