Registro completo |
Provedor de dados: |
ArchiMer
|
País: |
France
|
Título: |
Viral degradation of marine bacterial exopolysaccharides
|
Autores: |
Lelchat, Florian
Mocaer, P Y
Ojima, T
Michel, G
Sarthou, Geraldine
Bucciarelli, Eva
Cérantola, S
Colliec-jouault, Sylvia
Boisset, Claire
Baudoux, A-c
|
Data: |
2019-07
|
Ano: |
2019
|
Palavras-chave: |
Marine phage
EPS
Polysaccharidase
DOM
Ocean
|
Resumo: |
The identification of the mechanisms by which marine dissolved organic matter (DOM) is produced and regenerated is critical to develop robust prediction of ocean carbon cycling. Polysaccharides represent one of the main constituents of marine DOM and their degradation is mainly attributed to polysaccharidases derived from bacteria. Here, we report that marine viruses can depolymerize the exopolysaccharides (EPS) excreted by their hosts using 5 bacteriophages that infect the notable EPS producer, Cobetia marina DSMZ 4741. Degradation monitorings as assessed by gel electrophoresis and size exclusion chromatography showed that 4 out of 5 phages carry structural enzymes that depolymerize purified solution of Cobetia marina EPS. The depolymerization patterns suggest that these putative polysaccharidases are constitutive, endo-acting, and functionally diverse. Viral adsorption kinetics indicate that the presence of these enzymes provides a significant advantage for phages to adsorb onto their hosts upon intense EPS production conditions. The experimental demonstration that marine phages can display polysaccharidases active on bacterial EPS lead us to question whether viruses could also contribute to the degradation of marine DOM and modify its bioavailability. Considering the prominence of phages in the ocean, such studies may unveil an important microbial process that affects the marine carbon cycle.
|
Tipo: |
Text
|
Idioma: |
Inglês
|
Identificador: |
https://archimer.ifremer.fr/doc/00499/61062/64512.pdf
DOI:10.1093/femsec/fiz079
https://archimer.ifremer.fr/doc/00499/61062/
|
Editor: |
Oxford University Press (OUP)
|
Formato: |
application/pdf
|
Fonte: |
Fems Microbiology Ecology (0168-6496) (Oxford University Press (OUP)), 2019-07 , Vol. 95 , N. 7 , P. fiz079 (11p.)
|
Direitos: |
info:eu-repo/semantics/openAccess
restricted use
|
|