Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  5
País:  France
Título:  Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
Autores:  Land, Peter E.
Findlay, Helen S.
Shutler, Jamie D.
Ashton, Ian
Holding, Thomas
Grouazel, Antoine
Ardhuin, Fanny
Reul, Nicolas
Piolle, Jean-francois
Chapron, Bertrand
Quilfen, Yves
Bellerby, Richard G.j.
Bhadury, Punyasloke
Salisbury, Joseph
Vandemark, Douglas
Sabia, Roberto
Data:  2019-12
Ano:  2019
Palavras-chave:  Carbonate chemistry
Earth observation
Ocean acidification
Total alkalinity
Dissolved inorganic carbon
SMOS
Aquarius
CORA
HadGEM2-ES
Resumo:  Improving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ data are reproducible, both regionally and globally, using salinity and temperature datasets, with satellite observed salinity from Aquarius and SMOS providing performance comparable to other datasets for the majority of case studies. Global root mean squared difference (RMSD) between in situ validation data and satellite estimates is 17 μmol kg−1 with bias  < 5 μmol kg−1 for AT and 30 μmol kg−1 with bias  < 10 μmol kg−1 for CT. This analysis demonstrates that satellite sensors provide a credible solution for monitoring surface synoptic scale AT and CT. It also enables the first demonstration of observation-based synoptic scale AT and CT temporal mixing in the Amazon plume for 2010–2016, complete with a robust estimation of their uncertainty.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00591/70267/68368.pdf

DOI:10.1016/j.rse.2019.111469

https://archimer.ifremer.fr/doc/00591/70267/
Editor:  Elsevier BV
Formato:  application/pdf
Fonte:  Remote Sensing Of Environment (0034-4257) (Elsevier BV), 2019-12 , Vol. 235 , P. 111469 (15p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional