|
|
|
|
|
Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-guldberg, Ove; Hsu, S; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; Von Schuckmann, Karina; Zachos, James C.. |
We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of similar to 500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of similar to 1000 GtC, sometimes associated with 2 degrees C global warming, would spur "slow" feedbacks and eventual warming of 3-4 degrees C... |
Tipo: Text |
|
Ano: 2013 |
URL: http://archimer.ifremer.fr/doc/00170/28092/26670.pdf |
| |
|
| |
|
|
Von Schuckmann, Karina; Cheng, Lijing; Palmer, Matthew D.; Hansen, James; Tassone, Caterina; Aich, Valentin; Adusumilli, Susheel; Beltrami, Hugo; Boyer, Tim; Cuesta-valero, Francisco José; Desbruyères, Damien; Domingues, Catia; García-garcía, Almudena; Gentine, Pierre; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Ishii, Masayoshi; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kirchengast, Gottfried; Kolodziejczyk, Nicolas; Lyman, John; Marzeion, Ben; Mayer, Michael; Monier, Maeva; Monselesan, Didier Paolo; Purkey, Sarah; Roemmich, Dean; Schweiger, Axel; Seneviratne, Sonia I.; Shepherd, Andrew; Slater, Donald A.; Steiner, Andrea K.; Straneo, Fiammetta; Timmermans, Mary-louise; Wijffels, Susan E.. |
Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming... |
Tipo: Text |
|
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00648/76036/76956.pdf |
| |
|
|
|