Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAno

Imprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Growth characteristics modeling of Lactobacillus acidophilus using RSM and ANN 52
Meena,Ganga Sahay; Kumar,Nitin; Majumdar,Gautam Chandra; Banerjee,Rintu; Meena,Pankaj Kumar; Yadav,Vijesh.
The culture conditions viz. additional carbon and nitrogen content, inoculum size, age, temperature and pH of Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted to cultivations from a Box-Behnken Design (BBD) design experiments for different variables. This concept of combining the optimization and modeling presented different optimal conditions for L. acidophilus growth from their original optimization study. Through these statistical tools, the product yield (cell mass) of L. acidophilus was increased. Regression coefficients (R²) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of...
Tipo: Info:eu-repo/semantics/article Palavras-chave: Response surface methodology (RSM); Artificial neural network (ANN); Genetic algorithms (GA); Box-behnken besign (BBD).
Ano: 2014 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132014000100003
Imagem não selecionada

Imprime registro no formato completo
Growth Characteristics Modeling of Mixed Culture of Bifidobacterium bifidum and Lactobacillus acidophilus using Response Surface Methodology and Artificial Neural Network 52
Meena,Ganga Sahay; Majumdar,Gautam Chandra; Banerjee,Rintu; Kumar,Nitin; Meena,Pankaj Kumar.
Different culture conditions viz. additional carbon and nitrogen content, inoculum size and age, temperature and pH of the mixed culture of Bifidobacterium bifidum and Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted for the cultivations using a Fractional Factorial (FF) design experiments for different variables. This novel concept of combining the optimization and modeling presented different optimal conditions for the mixture of B. bifidum and L. acidophilus growth from their one variable at-a-time (OVAT) optimization study. Through these statistical tools, the product yield (cell mass) of the mixture of B. bifidum and L. acidophilus was increased....
Tipo: Info:eu-repo/semantics/article Palavras-chave: Response surface methodology (RSM); Artificial neural network (ANN); Genetic algorithms (GA); Fractional factorial design (FFD); Bifidobacterium bifidum; Lactobacillus acidophilus.
Ano: 2014 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132014000600962
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional