|
|
|
|
| |
|
|
Land, Peter E.; Findlay, Helen S.; Shutler, Jamie D.; Ashton, Ian; Holding, Thomas; Grouazel, Antoine; Ardhuin, Fanny; Reul, Nicolas; Piolle, Jean-francois; Chapron, Bertrand; Quilfen, Yves; Bellerby, Richard G.j.; Bhadury, Punyasloke; Salisbury, Joseph; Vandemark, Douglas; Sabia, Roberto. |
Improving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ... |
Tipo: Text |
Palavras-chave: Carbonate chemistry; Earth observation; Ocean acidification; Total alkalinity; Dissolved inorganic carbon; SMOS; Aquarius; CORA; HadGEM2-ES. |
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00591/70267/68368.pdf |
| |
|
|
|