|
|
|
|
|
Chust, Guillem; Allen, J. Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L.; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, Georges; Smith, Chris; Garcon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A.; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier. |
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis,... |
Tipo: Text |
Palavras-chave: Ecosystem model; Food web; Plankton; Primary production; Sea warming; Trophic amplification. |
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00188/29966/28481.pdf |
| |
|
|
Rose, Kenneth A.; Allen, J. Icarus; Artioli, Yuri; Barange, Manuel; Blackford, Jerry; Carlotti, Francois; Cropp, Roger; Daewel, Ute; Edwards, Karen; Flynn, Kevin; Hill, Simeon L.; Hillerislambers, Reinier; Huse, Geir; Mackinson, Steven; Megrey, Bernard; Moll, Andreas; Rivkin, Richard; Salihoglu, Baris; Schrum, Corinna; Shannon, Lynne; Shin, Yunne-jai; Smith, S. Lan; Smith, Chris; Solidoro, Cosimo; St John, Michael; Zhou, Meng. |
There is growing interest in models of marine ecosystems that deal with the effects of climate change through the higher trophic levels. Such end-to-end models combine physicochemical oceanographic descriptors and organisms ranging from microbes to higher-trophic-level (HTL) organisms, including humans, in a single modeling framework. The demand for such approaches arises from the need for quantitative tools for ecosystem-based management, particularly models that can deal with bottom-up and top-down controls that operate simultaneously and vary in time and space and that are capable of handling the multiple impacts expected under climate change. End-to-end models are now feasible because of improvements in the component submodels and the availability of... |
Tipo: Text |
|
Ano: 2010 |
URL: https://archimer.ifremer.fr/doc/00483/59488/62350.pdf |
| |
|
|
|