|
|
|
|
|
Griffies, Stephen M.; Yin, Jianjun; Durack, Paul J.; Goddard, Paul; Bates, Susan C.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Boening, Claus W.; Bozec, Alexandra; Chassignet, Eric; Danabasoglu, Gokhan; Danilov, Sergey; Domingues, Catia M.; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Greatbatch, Richard J.; Holland, David M.; Ilicak, Mehmet; Large, William G.; Lorbacher, Katja; Lu, Jianhua; Marsland, Simon J.; Mishra, Akhilesh; Nurser, A. J. George; Salas Y Melia, David; Palter, Jaime B.; Samuels, Bonita L.; Schroeter, Jens; Schwarzkopf, Franziska U.; Sidorenko, Dmitry; Treguier, Anne-marie; Tseng, Yu-heng; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Winton, Michael; Zhang, Xuebin. |
The Palomares Margin, an NNE–SSW segment of the South Iberian Margin located between the Alboran and the Algerian–Balearic basins, is dissected by two major submarine canyon systems: the Gata (in the South) and the Alías–Almanzora (in the North). New swath bathymetry, side-scan sonar images, accompanied by 5 kHz and TOPAS subbottom profiles, allow us to recognize these canyons as Mediterranean examples of medium-sized turbidite systems developed in a tectonically active margin. The Gata Turbidite System is confined between residual basement seamounts and exhibits incised braided channels that feed a discrete deep-sea fan, which points to a dominantly coarse-grained turbiditic system. The Alías–Almanzora Turbidite System, larger and less confined, is a... |
Tipo: Text |
Palavras-chave: Sea level; CORE global ocean-ice simulations; Steric sea level; Global sea level; Ocean heat content. |
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00188/29904/28349.pdf |
| |
|
|
Wang, Qiang; Ilicak, Mehmet; Gerdes, Ruediger; Drange, Helge; Aksenov, Yevgeny; Bailey, David A.; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Boening, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Rabe, Benjamin; Roth, Christina; Salas Y Melia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.. |
The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the... |
Tipo: Text |
Palavras-chave: Arctic Ocean; Freshwater; Sea ice; CORE II atmospheric forcing. |
Ano: 2016 |
URL: http://archimer.ifremer.fr/doc/00313/42463/41835.pdf |
| |
|
|
Ilicak, Mehmet; Drange, Helge; Wang, Qiang; Gerdes, Rudiger; Aksenov, Yevgeny; Bailey, David; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Boening, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Roth, Christina; Salas Y Melia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.. |
In this paper we compare the simulated Arctic Ocean in 15 global ocean–sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias... |
Tipo: Text |
Palavras-chave: Arctic Ocean; Atlantic Water; St. Anna Trough; Density currents; CORE-II atmospheric forcing. |
Ano: 2016 |
URL: http://archimer.ifremer.fr/doc/00317/42864/42295.pdf |
| |
|
|
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph. |
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon... |
Tipo: Text |
|
Ano: 2016 |
URL: https://archimer.ifremer.fr/doc/00383/49411/49882.pdf |
| |
|
|
Danabasoglu, Gokhan; Yeager, Steve G.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Boening, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, E; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Jung, Thomas; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, G; Marsland, Simon J.; Masinam, Simona; Navarram, Antonio; Nurser, A. J. George; Pirani, Anna; Salas Y Melia, David; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Treguier, Anne-marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wangi, Qiang. |
Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed... |
Tipo: Text |
Palavras-chave: Global ocean-sea-ice modelling; Ocean model comparisons; Atmospheric forcing; Experimental design; Atlantic meridional overturning circulation; North Atlantic simulations. |
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00164/27525/28368.pdf |
| |
|
|
Tjiputra, Jerry F.; Schwinger, Jorg; Bentsen, Mats; Moree, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yan-chun; Olivie, Dirk; Seland, Oyvind; Schulz, Michael. |
The ocean carbon cycle is a key player in the climate system through its role in regulating the atmospheric carbon dioxide concentration and other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospheric component, leading to a direct feedback to the climate. Atmospheric nitrogen deposition and additional riverine inputs of other biogeochemical tracers have recently been... |
Tipo: Text |
|
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00676/78837/81097.pdf |
| |
|
|
|