|
|
|
|
|
Geli, Louis; Henry, P.; Grall, Celine; Tary, Jean-baptiste; Lomax, A.; Batsi, Evangelia; Riboulot, Vincent; Cros, Estelle; Gurbuz, C.; Isik, S. E.; Sengor, A. M. C.; Le Pichon, X.; Ruffine, Livio; Dupre, Stephanie; Thomas, Yannick; Kalafat, D.; Bayrakci, G.; Coutellier, Q.; Regnier, Thibaut; Westbrook, Graham; Saritas, H.; Cifci, G.; Cagatay, M. N.; Ozeren, M. S.; Gorur, N.; Tryon, M.; Bohnhoff, M.; Gasperini, L.; Klingelhoefer, Frauke; Scalabrin, Carla; Augustin, Jean-marie; Embriaco, D.; Marinaro, G.; Frugoni, F.; Monna, S.; Etiope, G.; Favali, P.; Becel, A.. |
Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth... |
Tipo: Text |
|
Ano: 2018 |
URL: https://archimer.ifremer.fr/doc/00439/55072/56500.pdf |
| |
|
|
Grall, Celine; Henry, P.; Thomas, Yannick; Westbrook, Graham; Cagatay, M. N.; Marsset, Bruno; Saritas, H.; Cifci, G.; Geli, Louis. |
[1] High-resolution 3-D seismic data acquired in the Sea of Marmara on the Western High, along the northwestern branch of the North Anatolian Fault (also known as the Main Marmara Fault), shed new light on the evolution of the deformation over the last 500–600 ka. Sedimentary sequences in ponded basins are correlated with glacioeustatic cycles and transitions between marine and low sea/lake environments in the Sea of Marmara. In the 3 × 11 km2 of the 3-D seismic survey, deformation over the last 405–490 ka is localized along the main fault branch and north of it, where N130°–N140° trending normal faults and N40°–N50° folding accommodated strike-slip deformation associated with active argillokinesis. There is some evidence that deformation was more... |
Tipo: Text |
|
Ano: 2013 |
URL: http://archimer.ifremer.fr/doc/00169/28074/26289.pdf |
| |
|
|
|