|
|
|
|
|
Lotze, Heike K.; Tittensor, Derek P.; Bryndum-buchholz, Andrea; Eddy, Tyler D.; Cheung, William W. L.; Galbraith, Eric D.; Barange, Manuel; Barrier, Nicolas; Bianchi, Daniele; Blanchard, Julia L; Bopp, Laurent; Buchner, Matthias; Bulman, Catherine M.; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fulton, Elizabeth A.; Jennings, Simon; Jones, Miranda C.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-ramos, Ricardo; Roy, Tilla; Fernandes, Jose A.; Schewe, Jacob; Shin, Yunne-jai; Silva, Tiago A. M.; Steenbeek, Jeroen; Stock, Charles A.; Verley, Philippe; Volkholz, Jan; Walker, Nicola D.; Worm, Boris. |
While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (+/- 4% SD) under low emissions and 17% (+/- 11% SD) under high emissions by 2100, with an average 5% decline for every 1 degrees C of warming. Projected biomass... |
Tipo: Text |
Palavras-chave: Climate change impacts; Marine food webs; Global ecosystem modeling; Model intercomparison; Uncertainty. |
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00659/77125/78507.pdf |
| |
|
|
Roberts, Callum M.; O'Leary, Bethan C.; Mccauley, Douglas J.; Cury, Philippe Maurice; Duarte, Carlos M.; Lubchenco, Jane; Pauly, Daniel; Saenz-arroyo, Andrea; Rashid Sumaila, Ussif; Wilson, Rod W.; Worm, Boris; Carlos Castilla, Juan. |
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change... |
Tipo: Text |
Palavras-chave: Ecological insurance; Marine protected areas; Nature-based solution; MPA; Global change. |
Ano: 2017 |
URL: https://archimer.ifremer.fr/doc/00625/73712/76769.pdf |
| |
|
|
|