Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 6
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Annotated plant pathology databases for image-based detection and recognition of diseases. Repositório Alice
BARBEDO, J. G. A.; KOENIGKAN, L. V.; HALFELD-VIEIRA, B. de A.; COSTA, R. V. da; NECHET, K. de L.; GODOY, C. V.; LOBO JUNIOR, M.; PATRÍCIO, F. R. A.; TALAMINI, V.; CHITARRA, L. G.; OLIVEIRA, S. A. S. de; ISHIDA, A. K. N.; FERNANDES, J. M. C.; SANTOS, T. T.; CAVALCANTI, F. R.; TERAO, D.; ANGELOTTI, F..
Over the last few years, considerable effort has been spent by Embrapa in the construction of a plant disease database representative enough for the development of effective methods for automatic plant disease detection and recognition. In October of 2016, this database, called PDDB, had 2326 images of 171 diseases and other disorders affecting 21 plant species. PDDB size, although considerable, is not enough to allow the use of powerful techniques such as deep learning. In order to increase its size, each image was subdivided according to certain criteria, increasing the number of images to 46,513. Both the original (PDDB) and subdivided (XDB)databases are now being made freely available for academic research purposes, thus supporting new studies and...
Tipo: Artigo de periódico Palavras-chave: Patologia vegetal; Banco de dados; Aprendizagem profunda; Processamento de imagem; Deep learning; Doença de Planta; Plant pathology; Plant diseases and disorders; Databases; Image analysis.
Ano: 2018 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1094883
Imagem não selecionada

Imprime registro no formato completo
Annotated plant pathology databases for image-based detection and recognition of diseases. Repositório Alice
BARBEDO, J. G. A.; KOENIGKAN, L. V.; HALFELD-VIEIRA, B. de A.; COSTA, R. V. da; NECHET, K. de L.; GODOY, C. V.; LOBO JUNIOR, M.; PATRÍCIO, F. R. A.; TALAMINI, V.; CHITARRA, L. G.; OLIVEIRA, S. A. S. de; ISHIDA, A. K. N.; FERNANDES, J. M. C.; SANTOS, T. T.; CAVALCANTI, F. R.; TERAO, D.; ANGELOTTI, F..
Over the last few years, considerable effort has been spent by Embrapa in the construction of a plant disease database representative enough for the development of effective methods for automatic plant disease detection and recognition. In October of 2016, this database, called PDDB, had 2326 images of 171 diseases and other disorders affecting 21 plant species. PDDB size, although considerable, is not enough to allow the use of powerful techniques such as deep learning. In order to increase its size, each image was subdivided according to certain criteria, increasing the number of images to 46,513. Both the original (PDDB) and subdivided (XDB)databases are now being made freely available for academic research purposes, thus supporting new studies and...
Tipo: Artigo de periódico Palavras-chave: Patologia vegetal; Banco de dados; Aprendizagem profunda; Imagem em processamento; Doença de Planta; Plant pathology; Plant diseases and disorders; Databases.
Ano: 2018 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1097219
Imagem não selecionada

Imprime registro no formato completo
Detecção automática de uvas e folhas em viticultura com uma rede neural YOLOv2. Repositório Alice
SANTOS, A. A. dos; AVILA, S.; SANTOS, T. T..
RESUMO - Neste trabalho, o problema de detecção de frutas e folhas em viticultura para aplicações envolvendo sensoriamento próximo foi modelado como um problema de aprendizado supervisionado de máquina. Uma base de dados foi criada e manualmente anotada a partir de imagens obtidas em abril de 2017 na Vinícola Guaspari. No total são 11.883 imagens contendo exemplos de cachos de uvas e folhas. Uma rede convolutiva com arquitetura YOLOv2 foi treinada para localização e classificação de cachos e folhas. Testes quantitativos demonstraram resultados para a detecção e classificação com precisão de 100%, revocação de até 74,2% e F1-Score de 85,2% para classe "uva" e precisão de 100%, revocação de até 67,9% e F1-Score de 80,9% para a classe "folha". Testes...
Tipo: Anais e Proceedings de eventos Palavras-chave: Detecção de frutos; Reconhecimento de Imagens; Aprendizagem profunda; Aprendizado de máquina; Redes neurais; Aprendizado supervisionado; Image Recognition; Fruit detection; Deep Learning; Learning machine; Viticultura; Viticulture; Neural networks.
Ano: 2018 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1096173
Imagem não selecionada

Imprime registro no formato completo
Detecção de frutos em viticultura utilizando redes neurais profundas. Repositório Alice
SOUZA, L. L. de; AVILA, S.; SANTOS, T. T..
RESUMO - Neste trabalho investigamos técnicas de detecção de objetos por redes neurais aplicadas à detecção de frutos em viticultura. Desenvolvemos também a base de dados Embrapa WGISD, composta por imagens coletadas em Abril de 2017 e Abril de 2018 na Vinícola De Guaspari. Anotada manualmente, a base de dados possui 5 cultivares diferentes de uva: Syrah, Chardonnay, Cabernet Franc, Cabernet Sauvignon e Sauvignon Blanc, totalizando 4419 amostras de cachos de uva. Foram treinadas duas redes neurais convolutivas de arquiteturas, YOLOv2 e YOLOv3, para detecção e localização dos cachos nas imagens. Resultados quantitativos demonstraram precisão de até 88%, revocação de até 74%, e F1-Score de até 80% para YOLOv2 e precisão de até 92%, revocação de até 65% e...
Tipo: Anais e Proceedings de eventos Palavras-chave: Detecção de frutos; Redes neurais; Aprendizagem profunda; Detecção de uvas; Fruit detection; Deep Learning; Viticultura; Viticulture; Neural networks.
Ano: 2019 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1111590
Imagem não selecionada

Imprime registro no formato completo
Estudo de métodos de aprendizagem profunda para reconhecimento de bagas de uva. Repositório Alice
SANTOS, A. A. dos; SANTOS, T. T..
Resumo: Dois métodos de aprendizagem profunda (deep learning) para reconhecimento de frutos foram estudados. Foi utilizada uma base de dados de 1.830 imagens contando exemplos de bagas de uva e não uva manualmente anotadas. Os testes realizados demonstraram a identificação de bagas com 85% de precisão e de cobertura (recall) utilizando redes neurais convolutivas. Esses resultados melhoraram o método anteriormente proposto por Santos e Santos (2017) e demonstram a possibilidade de evolução de métodos que podem ser aplicados em campo.
Tipo: Anais e Proceedings de eventos Palavras-chave: Aprendizagem profunda; Visão computacional; Reconhecimento de padrões; Deep learning; Pattern recognition.; Viticultura; Computer vision..
Ano: 2017 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1085142
Imagem não selecionada

Imprime registro no formato completo
Iboju: uma ferramenta de anotação de imagens para treinamento de detectores. Repositório Alice
FERREIRA SOBRINHO, P. A.; SANTOS, T. T..
RESUMO - A automação no contexto da agricultura é significativamente mais complexa do que em contextos urbanos e industriais. Devido à grande variabilidade das estruturas orgânicas, métodos cada vez mais complexos e rebuscados são necessários para um bom reconhecimento de padrões e detecção de imagens, tão necessários para a automação de processos produtivos de atividades ligadas à agropecuária. Contudo, devido à natureza das imagens naturais, existem poucas ferramentas capazes de anotá-las da forma desejada. Neste trabalho, desenvolvemos a Iboju, uma ferramenta de segmentação em imagem natural capaz de anotar, rápida e eficientemente, em imagens capturadas de ambientes naturais ligados à agropecuária, gerando caixas delimitadoras e máscaras do objeto...
Tipo: Anais e Proceedings de eventos Palavras-chave: Segmentação; Aprendizagem profunda; Anotação de imagens; Agropecuária; Rede neural; Aprendizado de máquina; Deep learning; Segmentation; Image annotation; Neural networks.
Ano: 2021 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1135134
Registros recuperados: 6
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional