Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 4
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Aromas potentiality of tuna cooking juice concentrated by nanofiltration ArchiMer
Walha, Khaled; Ben Amar, Raja; Masse, Anthony; Bourseau, Patrick; Cardinal, Mireille; Cornet, Josiane; Prost, Carole; Jaouen, Pascal.
Tuna cooking juices contain high organic load preventing the rejection in the environment without treatment. But the effluents present an interesting fishy odour and it is worth recovering aroma compounds. In this work, two industrial tuna cooking juices were concentrated by nanofiltration. Nanofiltration performance was discussed in terms of permeation fluxes, organic matter retention and impact on the aromatic properties of juices. NF sharply decreases the global intensity of juices and modifies their aromatic equilibrium. However, the main characteristics and the marine nature of juices were kept. A pre-treatment by microfiltration (MF) induces a marked increase in permeation fluxes during NF concentration while it slightly affects the aromatic...
Tipo: Text Palavras-chave: Tuna cooking juice; Aromas concentration; Membrane separation; Nanofiltration; Sensory analysis.
Ano: 2011 URL: http://archimer.ifremer.fr/doc/00016/12711/9689.pdf
Imagem não selecionada

Imprime registro no formato completo
Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: impact on peptidic populations ArchiMer
Bourseau, Patrick; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-derouiniot, Maryse; Masse, Anthony; Guerard, Fabienne; Chabeaud, Aurélie; Fouchereau-peron, Martine; Le Gal, Yves; Ravallec-ple, Rosenn; Berge, Jean-pascal; Picot, Laurent; Piot, Jean -marie; Batista, Ireneu; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inger.
The production by enzymatic treatment of fish protein hydrolysates (FPH) is a promising route to add value to fisheries proteinic co-products (fish frames, heads etc.). Indeed, FPH possess good nutritional properties and biological activities for food and feed uses. Pressure-driven membrane separations such as ultrafiltration (UF) and nanofiltration (NF) can be used after the hydrolysis to, increase the specific activities of the FPH. This paper discusses the impact of a two-step UF/NF process producing four different fractions on two industrial FPH with different hydrolysis degrees. Fractionation is carried out in "realistic" conditions for an industrial process, on highly concentrated FPH solutions (about 100 g of dry matter/L) at a high volume reduction...
Tipo: Text Palavras-chave: Peptidic profile; Fractionation process; Membrane separation; Nanofiltration; Ultrafiltration; FPH; Fish protein hydrolysate.
Ano: 2009 URL: http://archimer.ifremer.fr/doc/2009/publication-6653.pdf
Imagem não selecionada

Imprime registro no formato completo
Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties ArchiMer
Picot, Laurent; Ravallec, Rozenn; Fouchereau-peron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-derouiniot, Maryse; Guerard, Fabienne; Chabeaud, Aurelie; Legal, Yves; Martinez Alvarez, Oscar; Berge, Jean-pascal; Piot, Jean-marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inger; Bourseau, Patrick.
BACKGROUND: Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. RESULTS: The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing...
Tipo: Text Palavras-chave: Fish protein hydrolysate; Ultrafiltration; Nanofiltration; Membrane separation; Fractionation process; Bioactive peptide.
Ano: 2010 URL: http://archimer.ifremer.fr/doc/00011/12217/9259.pdf
Imagem não selecionada

Imprime registro no formato completo
Pre-purification by membrane filtration of paralytic shellfish toxins from Alexandrium minutum dinoflagellate ArchiMer
Balti, Rafik; Brodu, Nicolas; Zhang, Jiaxuan; Amzil, Zouher; Drouin, Delphine; Sechet, Veronique; Masse, Anthony.
The Paralytic shellfish neurotoxins (PST) are of increasing interest for biomedical applications. The chemical synthesis is often complex and expensive that’s why the purification by membrane filtration of PST from Alexandrium minutum dinoflagellate was investigated. Disrupted micro-alga cells by ultrasonic treatment were diafiltred to let pass toxins through an ultrafiltration membrane. Then, the mean permeate was concentrated and diafiltrated by nanofiltration. Mean permeate fluxes equal to 187, 135 and 135 L.h–1.m-2 were obtained during the first diafiltration, the concentration step and the final diafiltration respectively. Up to 57 % (mol/mol) and 78 % (mol/mol) of organic matters and salts were removed respectively. Divalent ions were sparsely...
Tipo: Text Palavras-chave: Paralytic shellfish poisoning; Nanofiltration; Membrane; Alexandrium minutum; Purification.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00451/56286/57865.pdf
Registros recuperados: 4
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional