Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Agrociencia
País:  Mexico
Título:  Effects of land use conversion on soil aggregate stability and organic carbon in different soils
Autores:  Ćirić,Vladimir
Manojlović,Maja
Belić,Milivoj
Nešić,Ljiljana
Šeremešić,Srdan
Data:  2013-09-01
Ano:  2013
Palavras-chave:  Aggregate stability
Soil organic carbon
Land use change
Soil type
Soil structure
Resumo:  Aggregate stability is an important factor of the soil functioning. Greater aggregate stability leads to greater soil organic carbon (SOC) preservation, while SOC acts as a key cementing agent in aggregation processes. The objective of this study was to investigate the effects of native vegetation conversion in soil aggregate stability and SOC concentration. The investigation was conducted in the Vojvodina Province, Serbia, in July 2009. Undisturbed soil samples were taken from Haplic Chernozem, Haplic Fluvisol and Gleyic Vertisol, at a depth ranging from 0 to 20 cm. A completely randomized experimental design was used with three replicates. Each soil type was considered under treatments 1) cropland &gt;100 years, 2) native meadow and 3) native deciduous forest. The means were compared by the Tukey test (p≤0.05). The sampling distance between different land use areas was less than 200 m. Wet sieving was performed in order to obtain four size classes of stable aggregates (8000-2000, 2000-250, 250-53 and <53 ,µm). The soil organic carbon concentration in aggregate classes was determined by the dichromate wet oxidation method. The conversion of native vegetation to cropland caused the MWD reduction of 78 % in Haplic Chernozem, 55 % in Haplic Fluvisol and 50 % in Gleyic Vertisol, and the largest decrease was recorded in the content of aggregates 2000-8000 µm. The reduction of the SOC concentration in sand-free aggregates occurred mainly in the aggregates 532000 µm amounting to 48 % in Gleyic Vertisol and 52 % in Haplic Chernozem, whereas in Haplic Fluvisol was 52 % in the aggregates 8000-2000. The silt and clay fraction (<53 µm) showed the highest level of SOC preservation. Due to the high concentration of SOC and clay, Gleyic Vertisol showed lower susceptibility to aggregate stability deterioration and greater ability for SOC preservation than Haplic Chernozem and Haplic Fluvisol. This study also indicated the necessity for sand-free correction in coarse-textured soils.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952013000600002
Editor:  Colegio de Postgraduados
Formato:  text/html
Fonte:  Agrociencia v.47 n.6 2013
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional