Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Repositório Alice
País:  Brazil
Título:  Análise de dados de medidas repetidas por meio do modelo linear geral e do modelo misto.
Autores:  FREITAS, A. R.
FERREIRA, R. de P.
MOREIRA, A.
Data:  2012-04-23
Ano:  2011
Palavras-chave:  Anállise estatística.
Alfafa
Matéria seca.
Statistical analysis
Alfalfa
Dry matter accumulation
Resumo:  O delineamento em blocos casualizados com parcelas divididas (split-plot) é um dos mais utilizados na agricultura. São muito comuns situações em que medidas repetidas avaliadas na parcela ao longo do tempo sejam analisadas como split-plot e, dependendo da estrutura de covariância que modela os erros dentro da parcela, tanto o modelo linear geral (GLM) quanto o modelo misto (MIXED) do SAS podem ser utilizados para análise. O objetivo foi avaliar as diferenças entre os procedimentos GLM e MIXED em blocos casualizados, nos quais as subparcelas são analisadas como medidas repetidas. Utilizou-se a análise de dados de produção de matéria seca (PMS) de um experimento em blocos casualizados de alfafa com 20 cortes, realizados quando aproximadamente 10% das plantas estavam em florescimento. O GLM não permite a modelagem da estrutura de covariância dos dados, porém é apropriado para ajustar modelos lineares gerais pelo método dos quadrados, produzindo resultados corretos em análises de medidas repetidas quando a condição de circularidade e esfericidade é atendida, isto é, a matriz de covariâncias é simetria composta (CS); o procedimento MIXED apresenta matriz mais apropriada do que a CS, por disponibilizar cerca de 40 tipos de estruturas de covariâncias, quando os dados têm distribuição normal. Data analysis of repeated measures by means of general linear model and mixed model. Split-plot randomized blocks are widely used in agricultural experiments. Situations where evaluations in the plot over time are considered as split-plots and analyzed as repeated measures are quite common. Depending on the covariance structure that modulates the errors within the plot, both the general linear model (GLM) and the mixed model (MIXED) of the Standard Linear Model can be used for analysis. The purpose of this research was to evaluate the fundamental differences between the GLM and MIXED procedures in randomized blocks where split-plots are analyzed as repeated measures. The data analysis of the dry matter production (DMP) of alfalfa (Medicago sativa L.) of twenty randomized cuts was utilized when approximately 10% of the plants were in blossom. The GLM model does not allow the modeling of data covariance structure; however, it is appropriate to adjust general linear models through the method of squares, producing correct results in repeated measures analyses when circularity and sphericity condition is met, that is, the covariance matrix is of compound symmetry (CS), while the MIXED model presents more appropriated covariance matrix than the CS, since it provides about 40 types of covariance structures when data are normally distributed.
Tipo:  Separatas
Idioma:  Inglês
Identificador:  Revista de Ciências Agrárias, Belém, v. 54, n. 3, p. 214-224, Set./Dez. 2011.

http://www.alice.cnptia.embrapa.br/alice/handle/doc/922826
Direitos:  openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional