Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Decreasing magnetization, lithospheric flexure and rejuvenated hydrothermalism off the Japan-Kuril subduction zone
Autores:  Choe, Hanjin
Dyment, Jerome
Data:  2020-05
Ano:  2020
Palavras-chave:  Hydrothermal circulation
Marine magnetic anomaly
Subduction zone
Outer rise
Bending oceanic crust
Resumo:  Seafloor spreading magnetic anomalies formed at mid‐ocean ridges initially display strong amplitudes that decay within the first 10 million years as a result of pervasive hydrothermal circulation and alteration. The amplitudes do not vary much for older oceanic crust, suggesting that the thickening sediments hinder heat advection. Here we show, however, that a systematic loss of ~20 % in the amplitude of the anomalies arises between the outer rise and the trench on old ocean crust approaching the Japan and Kuril subduction zones. We interpret this decay as reflecting the opening of normal faults and fissures caused by extension on the outer flexural rise, and the subsequent renewed circulation of seawater into the oceanic crust, resulting in additional alteration of the magnetic minerals. This interpretation is supported by higher heat flow and seismic velocity changes observed toward the trench. Plain Language Summary Seafloor spreading magnetic anomalies formed at mid‐ocean ridges initially display strong amplitudes that decrease within the first 10 million years as a result of the widespread circulation of hot seawater within the oceanic crust and the resulting alteration of its magnetic minerals. The amplitudes do not vary much for older oceanic crust, suggesting that the thickening sediments hinder the free exchange of seawater between the crustal aquifer and overlying ocean. Here we show, however, that a systematic loss of ~20 % in the amplitude of the anomalies appear between the outer rise, an elevation caused by the flexure of the plate entering subduction, and the trench on old ocean crust approaching the Japan and Kuril subduction zones. We interpret this decrease as reflecting the opening of faults and cracks caused by extension at the top of the bent oceanic plate and the subsequent renewed circulation of seawater into the oceanic crust, resulting in additional alteration of the magnetic minerals. This interpretation is supported by higher heat flow and seismic velocity changes observed toward the trench.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00614/72611/71621.pdf

DOI:10.1029/2019GL085975

https://archimer.ifremer.fr/doc/00614/72611/
Editor:  American Geophysical Union (AGU)
Formato:  application/pdf
Fonte:  Geophysical Research Letters (0094-8276) (American Geophysical Union (AGU)), 2020-05 , Vol. 47 , N. 9 , P. e2019GL085975 (7p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional