Registro completo |
Provedor de dados: |
ArchiMer
|
País: |
France
|
Título: |
GPM-Derived Climatology of Attenuation Due to Clouds and Precipitation at Ka-Band
|
Autores: |
Battaglia, Alessandro
Mroz, Kamil
Watters, Daniel
Ardhuin, Fabrice
|
Data: |
2020-03
|
Ano: |
2020
|
Palavras-chave: |
Attenuation
Cloud and precipitation
Ka-band
Radar
|
Resumo: |
Attenuation from clouds and precipitation hinders the use of Ka-band in SARs, radar altimeters and in satellite link communications. The NASA-JAXA Global Precipitation Measurement (GPM) mission, with its core satellite payload including a dual-frequency (13.6 and 35.5 GHz) radar and a multifrequency passive microwave radiometer, offers an unprecedented opportunity for better quantifying such attenuation effects. Based on four years of GPM products, this article presents a global climatology of Ka-band attenuation caused by clouds and precipitation and analyses the impact of the precipitation diurnal cycle. As expected, regions of high attenuation mirror precipitation patterns. Clouds and precipitation cause two-way attenuation at 35.5 GHz in excess of 3 dB about 1.5% of the time in the regions below 65$°, peaking at as much as 10% in the tropical rain belt and the South Pacific Convergence Zone and at circa 5% along the storm tracks of the North Atlantic and Pacific Oceans. Confirming previous findings, the diurnal cycle is particularly strong over the land and during the summer period; while over the ocean, the diurnal cycle is generally weaker some coherent features emerge in the tropical oceans and in the northern hemisphere. Results are useful for estimating data loss from (sun-synchronous) satellite adopting active instruments/links at a frequency close to 35 GHz.
|
Tipo: |
Text
|
Idioma: |
Inglês
|
Identificador: |
https://archimer.ifremer.fr/doc/00600/71196/69562.pdf
DOI:10.1109/TGRS.2019.2949052
https://archimer.ifremer.fr/doc/00600/71196/
|
Editor: |
Institute of Electrical and Electronics Engineers (IEEE)
|
Formato: |
application/pdf
|
Fonte: |
Ieee Transactions On Geoscience And Remote Sensing (0196-2892) (Institute of Electrical and Electronics Engineers (IEEE)), 2020-03 , Vol. 58 , N. 3 , P. 1812-1820
|
Direitos: |
info:eu-repo/semantics/openAccess
restricted use
|
|