Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Phylogenetic measures reveal eco‐evolutionary drivers of biodiversity along a depth gradient
Autores:  Eme, David
Anderson, M. J.
Myers, E. M. V.
Roberts, C. D.
Liggins, L.
Data:  2020-02
Ano:  2020
Palavras-chave:  Community phylogenetics
Deep sea
Energy gradient
Latitudinal gradient
Museum/cradle
New Zealand marine Actinopterygii
Resumo:  Energy and environmental stability are positively correlated with species richness along broad‐scale spatial gradients in terrestrial ecosystems, so their relative importance in generating and preserving diversity cannot be readily disentangled. This study seeks to exploit the negative correlation between energy and stability along the oceanic depth gradient to better understand their relative contribution in shaping broadscale biodiversity patterns. We develop a conceptual framework by simulating speciation and extinction along energy and stability gradients to generate expected patterns of biodiversity for a suite of complementary phylogenetic diversity metrics. Using a time‐calibrated molecular phylogeny for New Zealand marine ray‐finned fishes and a replicated community ecological sampling design, we then modelled these metrics along large‐scale depth and latitude gradients. Our results indicate that energy‐rich shallow waters may be an engine of diversity for percomorphs, but also suggest that recent speciation occurs in ancient fish lineages in the deep sea, hence questioning the role of energy as a key driver of speciation. Despite potentially facing high extinction early in their evolution, ancient phylogenetic lineages specialized for the deep‐sea were likely preserved by environmental stability during the Cenozoic. Furthermore, intermediate depths might be a ‘museum’ (or zone of overlap) for distinct lineages that occur predominantly in either shallow or deep‐sea waters. These intermediate depths (500–900 m) may form a ‘phylogenetic diversity bank’, perhaps providing a refuge during ancient (Mesozoic) extreme anoxic events affecting the deep sea and more recent (Pliocene–Pleistocene) climatic events occurring in shallow ecosystems. Finally, the phylogenetic structures observed in fish communities at intermediate depths suggest other processes might restrict the co‐occurrence of closely related species. Overall, by combining a conceptual framework with models of empirical phylogenetic diversity patterns, our study paves the way for understanding the determinants of biodiversity across the largest habitat on earth.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00609/72071/70778.pdf

https://archimer.ifremer.fr/doc/00609/72071/70779.pdf

DOI:10.1111/ecog.04836

https://archimer.ifremer.fr/doc/00609/72071/
Editor:  Wiley
Formato:  application/pdf
Fonte:  Ecography (0906-7590) (Wiley) In Press
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional