Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Assessing spatial and temporal variability of phytoplankton communities' composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 1: Biophysical control over plankton functional types succession and distribution
Autores:  Cadier, Mathilde
Gorgues, Thomas
Sourisseau, Marc
Edwards, Christopher A.
Aumont, Olivier
Marie, Louis
Memery, Laurent
Data:  2017-01
Ano:  2017
Palavras-chave:  Iroise Sea
Tidal mixing front
Biogeochemical modeling
Phytoplankton
Functional groups
Seasonal cycle
Resumo:  Understanding the dynamic interplay between physical, biogeochemical and biological processes represents a key challenge in oceanography, particularly in shelf seas where complex hydrodynamics are likely to drive nutrient distribution and niche partitioning of phytoplankton communities. The Iroise Sea includes a tidal front called the ‘Ushant Front’ that undergoes a pronounced seasonal cycle, with a marked signal during the summer. These characteristics as well as relatively good observational sampling make it a region of choice to study processes impacting phytoplankton dynamics. This innovative modeling study employs a phytoplankton-diversity model, coupled to a regional circulation model to explore mechanisms that alter biogeography of phytoplankton in this highly dynamic environment. Phytoplankton assemblages are mainly influenced by the depth of the mixed layer on a seasonal time scale. Indeed, solar incident irradiance is a limiting resource for phototrophic growth and small phytoplankton cells are advantaged over larger cells. This phenomenon is particularly relevant when vertical mixing is intense, such as during winter and early spring. Relaxation of wind-induced mixing in April causes an improvement of irradiance experienced by cells across the whole study area. This leads, in late spring, to a competitive advantage of larger functional groups such as diatoms as long as the nutrient supply is sufficient. This dominance of large, fast-growing autotrophic cells is also maintained during summer in the productive tidally-mixed shelf waters. In the oligotrophic surface layer of the western part of the Iroise Sea, small cells coexist in a greater proportion with large, nutrient limited cells. The productive Ushant tidal front's region (1800 mgC.m− 2.d− 1 between August and September) is also characterized by a high degree of coexistence between three functional groups (diatoms, micro/nano-flagellates and small eukaryotes/cyanobacteria). Consistent with previous studies, the biogeography of phytoplankton functional types at the Ushant front during summer displays an intermediate community composition between contrasted sub-regions on either side of the front. Strong mixing conditions within the frontal sub-region result in a short residence time of water masses, not allowing speciation or long term adaptation to occur.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00352/46367/45986.pdf

DOI:10.1016/j.jmarsys.2016.09.009

http://archimer.ifremer.fr/doc/00352/46367/
Editor:  Elsevier Science Bv
Formato:  application/pdf
Fonte:  Journal Of Marine Systems (0924-7963) (Elsevier Science Bv), 2017-01 , Vol. 165 , P. 47-68
Direitos:  2016 Published by Elsevier B.V.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional