Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Preliminary metabolomic approach on cyanobacterial co-cultures: Chemically mediated interactions between Microcystis and Planktothrix
Autores:  Mondeguer, Florence
Sibat, Manoella
Reubrecht, Sébastien
Amzil, Zouher
Bormans, Myriam
Hess, Philipp
Briand, Enora
Data:  2017-10-03
Ano:  2017
Palavras-chave:  Cyanobacteria
Cyanotoxins
Plankton interactions
Co_culture
LC_HRMS
Molecular Network
Metabolomics
Resumo:  Cyanobacterial proliferation is one of the most harmful hazards, in both freshwater and marine ecosystems. Cyanobacteria are well known for their ability to produce a wide variety of bioactive compounds, some of which have been described as allelochemicals. There is growing evidence that these secondary metabolites play an important role in shaping community composition through biotic interactions; however, for the most part, their biological role and mode of regulation of the production are poorly understood. In temperate eutrophic freshwaters, Microcystis and Planktothrix often co-occur, with Planktothrix being an early colonizer and Microcystis appearing subsequently. By integrating LC-MS/MS molecular networking and an innovative experimental design, we tested if the production of cyanopeptides by co-existing species could be regulated through interspecifc interactions. We investigated chemically mediated interactions between two cyanobacteria, a toxic M. aeruginosa strain and a non-toxic P. agardhii strain, using a combined approach of co-cultures and metabolomic profiling. More precisely, we evaluated changes in growth, morphology and metabolites production and release by both interacting species. Interestingly, culturing Microcystis with Planktothrix resulted in a reduction of the growth of Planktothrix together with a decrease of its filament size and alterations in the morphology of its cells. Ours untargeted metabolomic profiling allow to observe that the production of specific intracellular compounds by Planktothrix was not different between mono and co-culture conditions. Concerning Microcystis, the number of specific intracellular compounds was higher under co-culture condition than under monoculture. In general, Microcystis produced a lower number of intracellular compounds under monoculture than Planktothrix, and a higher number of compounds than Planktothrix under co-culture condition. These results suggest that specific compounds produced by Microcystis in the presence of Planktothrix have been specifically produced as potential allelochemicals. Identification of compounds specifically involved in the observed physiological and morphological changes of Planktothrix cells is still in progress.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00405/51666/52215.pdf

http://archimer.ifremer.fr/doc/00405/51666/
Editor:  SMMAP 2017 - Mass Spectrometry, Metabolomics and Proteomic Analysis. 2-5 octobre 2017, Paris
Formato:  application/pdf
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional