Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Paleo-environmental controls on cold seep carbonate authigenesis in the Sea of Marmara
Autores:  Cremiere, Antoine
Bayon, Germain
Ponzevera, Emmanuel
Pierre, Catherine
Data:  2013-08
Ano:  2013
Palavras-chave:  U-Th dating
Authigenic carbonates
Sea of Marmara
Cold seeps
Sapropel event
Carbon and oxygen isotopes
Resumo:  The factors controlling fluid emission dynamics at ocean margins are poorly understood. In particular, there are significant uncertainties on how fluid seepage at cold seeps may have responded to abrupt environmental changes in the geological past. This study reports on a detailed geochemical investigation of seafloor carbonate crusts sampled at cold seeps along the submerged part of the North Anatolian Fault system in the Sea of Marmara - an inland sea, which has experienced major paleo-environmental changes over the last deglaciation period. We also analyzed a series of authigenic carbonate concretions recovered from two sediment cores at the Western-High ridge, an active fluid venting area. The ages of seafloor carbonate crusts derived from isochron U-Th dating cover the last 7 kyr, suggesting that fluid activity along the fault system remained continuous over that time interval. In the sediment cores, carbonate concretions are concentrated at the lacustrine-to-marine transition, which corresponds to the period when Mediterranean waters flowed into the Marmara Basin about 12-14 kyr ago. U-Th isotopic data indicate that most of these concretions formed later during the Holocene, around 9-10 kyr ago, a period coinciding with an important anoxic event that led to the deposition of a sapropel layer in the Sea of Marmara. Based upon these results, we suggest that the absence of carbonate concretions in the lacustrine sediment unit indicates that dissolved sulfate concentrations in the Marmara lake pore waters during glacial time were too low to promote significant anaerobic methane oxidation, thereby preventing sedimentary carbonate authigenesis. In contrast, the progressive inflow of Mediterranean waters into the glacial Marmara lake after 15 ka provided a source of dissolved sulfate that allowed anaerobic oxidation of methane to proceed within the anoxic sediment. Importantly, the synchronism between the main phase of authigenic carbonate precipitation at the studied sites (average 9.4 +/- 1.8 ka, n = 16) and the regional anoxic sapropel event support the idea that the drop in bottom water dissolved oxygen content was probably a key factor to enhance microbial activity and associated carbonate precipitation at that time. Overall, these results provide straightforward evidence that fluid emission dynamics and hydrocarbon oxidation at cold seeps can be directly related to changing environmental conditions through time.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00161/27249/25488.pdf

DOI:10.1016/j.epsl.2013.06.029
Editor:  Elsevier Science Bv
Relação:  http://archimer.ifremer.fr/doc/00161/27249/
Formato:  application/pdf
Fonte:  Earth And Planetary Science Letters (0012-821X) (Elsevier Science Bv), 2013-08 , Vol. 376 , P. 200-211
Direitos:  2013ElsevierB.V.Allrightsreserved.
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional