Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish
Autores:  Le Croizier, Gael
Schaal, Gauthier
Point, David
Le Loc'H, Francois
Machu, Eric
Fall, Massal
Munaron, Jean-marie
Boye, Aurelien
Walter, Pierre
Lae, Raymond
De Morais, Luis Tito
Data:  2019-02
Ano:  2019
Palavras-chave:  Methylmercury sources
Trophic ecology
Feeding habitat
Metal bioaccumulation
Chemical tracers
Isotopic niche
Resumo:  Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) analyses in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrients inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00458/57013/58912.pdf

DOI:10.1016/j.scitotenv.2018.09.330

https://archimer.ifremer.fr/doc/00458/57013/
Editor:  Elsevier Science Bv
Formato:  application/pdf
Fonte:  Science Of The Total Environment (0048-9697) (Elsevier Science Bv), 2019-02 , Vol. 650 , N. Part.2 , P. 2129-2140
Direitos:  2018 Elsevier B.V. All rights reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional