Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Origin of organic compounds in fluids from ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge
Autores:  Konn, Cécile
Data:  2009-09-18
Ano:  2009
Palavras-chave:  Origin of life
Geochemistry
Hydrothermal
Ultramafic
Organic compounds
Hydrocarbons
Serpentinisation
Origine de la vie
Géochimie
Systèmes hydrothermaux
Ultrabasique
Composés organiques
Hydrocarbures
Serpentinisation
Resumo:  Natural gas, primarily methane (CH4), is produced in substantial amounts in ultramafic-hosted hydrothermal systems. These systems could also generate oil (heavier hydrocarbons) and the first building blocks of life (prebiotic molecules). In the presence of iron bearing minerals, serpentinisation reactions generate H2. Subsequently, CH4 could be synthesised by Fischer-Tropsch Type (FTT) reaction (4H2 + CO2 -> CH4 + 2H2O) which is an abiotic process. This has lead to the idea of abiotic formation of larger organic molecules. Both thermodynamics and laboratory work support this idea, yet field data have been lacking. This study focuses on determining the organic content of fluids from ultramafic-hosted hydrothermal systems from the Mid-Atlantic Ridge (MAR) and the origin of the compounds. Fluids were collected from the Lost City, Rainbow, Ashadze and Logatchev vent fields during the EXOMAR (2005), SERPENTINE (2007), MoMARDREAMnaut (2007) and MOMAR08-Leg2 (2008) cruises conducted by IFREMER, France. A SBSE-TD-GC-MS technique was developed and used to extract, concentrate, separate and identify compounds in the fluids. Hydrothermally derived compounds appeared to consist mainly of hydrocarbons and O-bearing molecules. In addition, some amino acids were detected in the fluids by ULPC-ESI-QToF-MS but their origin will need to be determined. The organic content of the Rainbow fluids did not show intra field variability unlike differences that could be noted over the years. In order to address the question of the source of the molecules, compound specific carbon isotopic analyses were carried out and completed with a bacterial (Pyrococcus abyssi) hydrothermal degradation experiment. The S13C data fall in the range of -40 to -30 0/00(vs. V-PDB), but individual S13C values preclude the identification of a biogenic or abiogenic origin of the compounds. The degradation experiment, however, suggests an abiogenic origin of a portion of saturated hydrocarbons whereas carboxylic acids would be biogenic, and aromatic compounds would be thermogenic.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/2009/these-6939.pdf
Editor:  Stockholm University
Relação:  http://archimer.ifremer.fr/doc/00000/6939/
Formato:  application/pdf
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional