Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Braz. J. Plant Physiol.
País:  Brazil
Título:  Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency.
Autores:  Brandão,Andrea D.
Sodek,Ladaslav
Data:  2009-01-01
Ano:  2009
Palavras-chave:  Glycine max
Hypoxia
Nitrate reductase
Nitrite
Waterlogging
Resumo:  Nitrate is reported to improve tolerance of plants towards oxygen deficiency enabled by waterlogging of the root system, but the mechanism underlying the phenomenon remains poorly understood. We studied the metabolism of nitrate in roots exposed to hypoxia, using soybean plants growing in a hydroponic system after suspending aeration and covering the surface of the nutrient solution with mineral oil. Nitrate depletion from the medium was more intense under hypoxia than normoxia, but in the presence of chloramphenicol, consumption under hypoxia was significantly reduced. Nitrite accumulated in the medium in the state of hypoxia and this effect was partially eliminated by chloramphenicol. Nitrate consumption sensitive to chloramphenicol was attributed to bacterial activity. Endogenous root nitrate was strongly reduced under hypoxia indicating mobilization. Although the transport of nitrate to the shoot via the xylem was also reduced under hypoxia, the severity of this reduction was dependent on the concentration of nitrate in the medium, suggesting that at least some of the nitrate in the xylem came from the medium. Root nitrate reductase was also strongly reduced under hypoxia, but recovered rapidly on return to normoxia. Overall, the data are consistent with two main metabolic fates for chloramphenicol-insensitive nitrate depletion under hypoxia: the reduction of some nitrate to nitrite (despite the reduced nitrate reductase activity) followed by its release to the medium (at least one-third of the nitrate consumed followed this route), and the transport of nitrate to the shoot. Nevertheless, it is highly unlikely that these metabolic routes account for all the nitrate consumed.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100003
Editor:  Brazilian Journal of Plant Physiology
Relação:  10.1590/S1677-04202009000100003
Formato:  text/html
Fonte:  Brazilian Journal of Plant Physiology v.21 n.1 2009
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional