Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Braz. J. Plant Physiol.
País:  Brazil
Título:  Xylem sap analysis reveals new facts of salt tolerance in rice genotypes
Autores:  Roshandel,Parto
Data:  2007-09-01
Ano:  2007
Palavras-chave:  Bypass flow
Na+ transport
Oryza sativa
Philaenus spumarius
Salt stress
Xylem concentration
Resumo:  Salinity damage in rice and other salt-sensitive species is due to excessive transport of NaCl through the root system to the leaves and consequently low salt transport to the shoot can be a major trait determining salt resistance. Since the rapid uptake of sodium ions is such a crucial part of the response of rice to salinity, physiological experiments were carried out to compare bypass flow in two genotypes of rice (IR4630 and IR15324) differing in salt tolerance, because it has been suggested that an apoplastic pathway, bypass flow, is a major contributory pathway for Na+ entrance into rice plants. Experiments on the youngest fully expanded photosynthetic leaf (the third from the base), using PTS as a tracer for apoplastic movement and Philaenus spumarius (a xylem-feeding insect) as a means to sample the xylem sap, did not demonstrate any apparent difference in bypass flow between the two lines. The similarity of Na+ concentration in the xylem sap of both genotypes paralleled the results of PTS (a fluorescent dye used as an apoplastic tracer for the transpiration stream) measurements. Despite the similarity of Na+ concentration in the xylem sap of the third leaves, the Na+ concentration in the bulk of these leaves of IR15324 plants (the sensitive line) was about twice that of IR4630 (the tolerant line). Measurements of transpiration over 8 d of salinisation showed the similarity of rates in both lines providing evidence that the greater accumulation of NaCl in IR15324 than in IR4630 plants was unlikely to be due to a difference in the delivery of salt to the leaves by an apoplastic route. Results of the current work suggest that the difference in salt tolerance might be a consequence of damage to leaves 1 and 2 of IR15324 that allowed Na+ to leak into the phloem - and consequently move to leaf 3.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202007000300002
Editor:  Brazilian Journal of Plant Physiology
Relação:  10.1590/S1677-04202007000300002
Formato:  text/html
Fonte:  Brazilian Journal of Plant Physiology v.19 n.3 2007
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional