Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Electron. J. Biotechnol.
País:  Chile
Título:  Genotypic variation in morphology and freezing resistance of Eucalyptus globulus seedlings subjected to drought hardening in nursery
Autores:  Coopman,Rafael E
Jara,Jorge C
Escobar,Rene
Corcuera,Luis J
Bravo,Leon A
Data:  2010-01-01
Ano:  2010
Palavras-chave:  Biomass allocation
Cross hardening
Genotypic selection
Planting stock quality
Water stress
Resumo:  Eucalyptus globulus Labill is one of the most planted species in Chile, because of its fast growth and superior pulp qualities. Nevertheless, the incidence of drought and frost damage immediately after planting is frequent. The purpose of this work was to study the effect of drought hardening on frost resistance and on variations in morphological traits that may increase drought resistance at nursery phase in four genotypes of E. globulus Labill. Drought hardening treatments consisted in induced water stress by watering restriction, until pre-dawn stem xylem water potentials (Ψpd) reached -0.2, -1.8 and -2.6 MPa. Two water stress-rewatering cycles were applied during 54 days of hardening. Plant and root biomasses were affected by the interaction of drought hardening and genotypes. The rest of morphological and alometrical traits were affected independently by drought or genotype. Plant height, leaf area, specific leaf area (SLA), stem, and leaf biomasses decreased with drought hardening, while collar diameter was not affected. Genotypes responded differentially to drought hardening in plant height, leaf area, SLA, and stem, and leaf biomasses. Ice nucleation temperature (INT), and freezing temperatures (FRT), and 50% freezing damage index of leaves (LT50) were affected by the interaction between drought hardening and genotypes. EG-13, EG-23 and EG-22 genotypes became freezing tolerant with drought hardening (-2.6 MPa). Additionally, EG-14 genotype increased its freezing resistance at -1.8 MPa. Therefore, freezing resistance levels and mechanism depend on genotype and drought hardening treatment. The success in tree breeding by genetic selection should be facilitated by improved understanding of the physiology of stress resistance development and survival during water supply limitations. The knowledge of morphological and freezing resistance dependency on the interaction between genotype and drought hardening may be useful nursery management information to improve plantation success.
Tipo:  Journal article
Idioma:  Inglês
Identificador:  http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582010000100005
Editor:  Pontificia Universidad Católica de Valparaíso
Formato:  text/html
Fonte:  Electronic Journal of Biotechnology v.13 n.1 2010
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional