Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Electron. J. Biotechnol.
País:  Chile
Título:  Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium
Autores:  Mo,Jixian
Wang,Zhigang
Xu,Weihui
Li,Shanshan
Yu,Zhidan
Data:  2015-05-01
Ano:  2015
Palavras-chave:  Bacillus
Box-Behnken design
Dimethyl phthalate
Medium optimization
Plackett-Burman design
Resumo:  Background Integrated statistical experimental designs were applied to optimize the medium constituents for the production of a dimethyl phthalate (DMP)-degrading strain Bacillus sp. QD14 in shake-flask cultures. A Plackett-Burman design (PBD) was applied to screen for significant factors, followed by the Steepest Ascent Method (SAM) to find the nearest region of maximum response. A Box-Behnken design (BBD) of the Response Surface Methodology (RSM) was conducted to optimize the final levels of the medium components. Results After the regression equation and response surface contour plots were analyzed, the concentrations of glucose, corn meal and NaCl were found to significantly influence the biomass of DMP-degrading bacteria. A combination of 22.88 g/L of glucose, 11.74 g/L of corn meal, and 10.34 g/L of NaCl was optimum for maximum biomass production of Bacillus sp. QD14. A 57.11% enhancement of the biomass production was gained after optimization in shake-flask cultivation. The biomass production of Bacillus sp. QD14 reached 9.13 ± 0.29 × 10(8) CFU/mL, which was an excellent match for the predicted value, and the mean value of the match degree was as high as 99.30%. Conclusion In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM); the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.
Tipo:  Journal article
Idioma:  Inglês
Identificador:  http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582015000300016
Editor:  Pontificia Universidad Católica de Valparaíso
Formato:  text/html
Fonte:  Electronic Journal of Biotechnology v.18 n.3 2015
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional