Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Rev. Bras. Ciênc. Solo
País:  Brazil
Título:  Is It Possible to Classify Topsoil Texture Using a Sensor Located 800 km Away from the Surface?
Autores:  Demattê,José Alexandre Melo
Alves,Marcelo Rodrigo
Terra,Fabricio da Silva
Bosquilia,Raoni Wainer Duarte
Fongaro,Caio Troula
Barros,Pedro Paulo da Silva
Data:  2016-01-01
Ano:  2016
Palavras-chave:  Bare soils
Satellite images
Spectral sensing
Multi-temporal images
Digital soil mapping
Soil remote sensing
Resumo:  ABSTRACT It is often difficult for pedologists to “see” topsoils indicating differences in properties such as soil particle size. Satellite images are important for obtaining quick information for large areas. However, mapping extensive areas of bare soil using a single image is difficult since most areas are usually covered by vegetation. Thus, the aim of this study was to develop a strategy to determine bare soil areas by fusing multi-temporal satellite images and classifying them according to soil textures. Three different areas located in two states in Brazil, with a total of 65,000 ha, were evaluated. Landsat images of a specific dry month (September) over five consecutive years were collected, processed, and subjected to atmospheric correction (values in surface reflectance). Non-vegetated areas were discriminated from vegetated ones using the Linear Spectral Mixture Model (LSMM) and Normalized Difference Vegetation Index (NDVI). Thus, we were able to fuse images with only bare soil. Field samples were taken from bare soil pixel areas. Pixels of soils with different textures (soil texture classifications) were used for supervised classification in which all areas with exposed soil were classified. Single images reached an average of 36 % bare soil, where the mapper could only “see” these points. After using the proposed methodology, we reached a maximum of 85 % in bare areas; therefore, a pedologist would have proper conditions for generating a continuous map of spatial variations in soil properties. In addition, we mapped soil textural classes with accuracy up to 86.7 % for clayey soils. Overall accuracy was 63.8 %. The method was tested in an unknown area to validate the accuracy of our classification method. Our strategy allowed us to discriminate and categorize different soil textures in the field with 90 % accuracy using images. This method can assist several professionals in soil science, from pedologists to mappers of soil properties, in soil management activities.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100311
Editor:  Sociedade Brasileira de Ciência do Solo
Relação:  10.1590/18069657rbcs20150335
Formato:  text/html
Fonte:  Revista Brasileira de Ciência do Solo v.40 2016
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional