Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  RChHN
País:  Chile
Título:  Genome dynamics, genetic complexity and macroevolution
Autores:  GALLARDO,MILTON
Data:  2003-12-01
Ano:  2003
Palavras-chave:  Gene duplication
Genome
Genetics
Evolution
Macroevolution
Evolutionary theory
Resumo:  Genome data analysis indicates that the major evolutionary transitions have been driven by substantial increases in genomic complexity. These increases, accounting for novelty in evolution, have proceeded mainly by gene duplication. This idea, advanced by <A HREF="#OHNO">Ohno (1968)</A>, remains current in the study of several organisms whose genomes have been sequenced. Maize, yeast, and humans contain more paralogons than would be expected to occur by chance, and this supports the contention that gene families were not formed de novo, but by large-scale DNA duplications. Lineage hybridization emerges as an efficient and widespread mechanism to create evolutionary novelty by recruiting redundant genes to new roles. Lateral gene transfer indicates a chimeric composition of prokaryote genomes. This peculiar manner of inheritance blurs the edges of phylogenetic lineages and suggests that the anastomosing and dichotomization of branches play key roles in determining the shape of the tree of life. Adaptive mutations have also enlarged the genetic framework of evolutionary thought by incorporating a new mechanism of gene formation. Moreover, developmental biology has provided solid grounds for understanding organisms as consisting of onto- and epigenetically organized modules. Rapid and drastic changes brought about by the study of developmental genes have discredited the notions that adaptation is achieved exclusively by stepwise allele replacement within populations, and that macroevolutionary change is extrapolated microevolution. Apparently, a broadening, if not a remodeling of the genetic framework in which we understand phylogeny and the evolution of morphological complexity, is emerging through the study of comparative genomics
Tipo:  Journal article
Idioma:  Inglês
Identificador:  http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2003000400013
Editor:  Sociedad de Biología de Chile
Formato:  text/html
Fonte:  Revista chilena de historia natural v.76 n.4 2003
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional