Formal knowledge about human anatomy, radiology or diseases is necessary to support clinical applications such as medical image search. This machine processable knowledge can be acquired from biomedical domain ontologies, which however, are typically very large and complex models. Thus, their straightforward incorporation into the software applications becomes difficult. In this paper we discuss first ideas on a statistical approach for modularizing large medical ontologies and we prioritize the practical applicability aspect. The underlying assumption is that the application relevant ontology fragments, i.e. modules, can be identified by the statistical analysis of the ontology concepts in the domain corpus. Accordingly, we argue that most frequently... |