Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 8
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem ArchiMer
Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Hauck, Judith; John, Jasmin G.; Lima, Ivan D.; Seferian, Roland; Volker, Christoph.
Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration...
Tipo: Text
Ano: 2016 URL: https://archimer.ifremer.fr/doc/00600/71205/69576.pdf
Imagem não selecionada

Imprime registro no formato completo
Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change ArchiMer
Lotze, Heike K.; Tittensor, Derek P.; Bryndum-buchholz, Andrea; Eddy, Tyler D.; Cheung, William W. L.; Galbraith, Eric D.; Barange, Manuel; Barrier, Nicolas; Bianchi, Daniele; Blanchard, Julia L; Bopp, Laurent; Buchner, Matthias; Bulman, Catherine M.; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fulton, Elizabeth A.; Jennings, Simon; Jones, Miranda C.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-ramos, Ricardo; Roy, Tilla; Fernandes, Jose A.; Schewe, Jacob; Shin, Yunne-jai; Silva, Tiago A. M.; Steenbeek, Jeroen; Stock, Charles A.; Verley, Philippe; Volkholz, Jan; Walker, Nicola D.; Worm, Boris.
While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (+/- 4% SD) under low emissions and 17% (+/- 11% SD) under high emissions by 2100, with an average 5% decline for every 1 degrees C of warming. Projected biomass...
Tipo: Text Palavras-chave: Climate change impacts; Marine food webs; Global ecosystem modeling; Model intercomparison; Uncertainty.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00659/77125/78507.pdf
Imagem não selecionada

Imprime registro no formato completo
Using altimetry to help explain patchy changes in hydrographic carbon measurements ArchiMer
Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-reimer, Ernst; Mercier, Herle; Metzl, Nicolas; Perez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro.
Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O-2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O-2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O-2 variability in the upper ocean. This results in...
Tipo: Text
Ano: 2009 URL: http://archimer.ifremer.fr/doc/00000/11107/7415.pdf
Imagem não selecionada

Imprime registro no formato completo
Variability of the Ocean Carbon Cycle in Response to the North Atlantic Oscillation ArchiMer
Keller, Kathrin M.; Joos, Fortunat; Raible, Christoph C.; Cocco, Valentina; Froelicher, Thomas L.; Dunne, John P.; Gehlen, Marion; Bopp, Laurent; Orr, James C.; Tjiputra, Jerry; Heinze, Christoph; Segschneider, Joachim; Roy, Tilla; Metzl, Nicolas.
Climate modes such as the North Atlantic Oscillation (NAO), representing internal variability of the climate system, influence the ocean carbon cycle and may mask trends in the sink of anthropogenic carbon. Here, utilising control runs of six fully coupled Earth System Models, the response of the ocean carbon cycle to the NAO is quantified. The dominating response, a seesaw pattern between the subtropical gyre and the subpolar Northern Atlantic, is instantaneous (<3 months) and dynamically consistent over all models and with observations for a range of physical and biogeochemical variables. All models show asymmetric responses to NAO+ and NAO− forcing, implying non-linearity in the connection between NAO and the ocean carbon cycle. However, model...
Tipo: Text Palavras-chave: North Atlantic Oscillation; Carbon cycle; Ocean biogeochemistry; Climate modeling; Ocean-atmosphere interaction.
Ano: 2012 URL: https://archimer.ifremer.fr/doc/00140/25166/23272.pdf
Imagem não selecionada

Imprime registro no formato completo
Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models ArchiMer
Frolicher, Thomas L.; Sarmiento, Jorge L.; Paynter, David J.; Dunne, John P.; Krasting, John P.; Winton, Michael.
The authors assess the uptake, transport, and storage of oceanic anthropogenic carbon and heat over the period 1861-2005 in a new set of coupled carbon-climate Earth system models conducted for the fifth phase of the Coupled Model Intercomparison Project (CMIP5), with a particular focus on the Southern Ocean. Simulations show that the Southern Ocean south of 30 degrees S, occupying 30% of global surface ocean area, accounts for 43% 63% (42 + 5 PgC) of anthropogenic CO2 and 75% 622% (23 + 9 x 10(22) J) of heat uptake by the ocean over the historical period. Northward transport out of the Southern Ocean is vigorous, reducing the storage to 33 +/- 6 Pg anthropogenic carbon and 12 +/- 7 x 10(22) J heat in the region. The CMIP5 models, as a class, tend to...
Tipo: Text
Ano: 2015 URL: https://archimer.ifremer.fr/doc/00383/49431/49841.pdf
Imagem não selecionada

Imprime registro no formato completo
Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models ArchiMer
Lee, Younjoo J.; Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Aumont, Olivier; Babin, Marcel; Buitenhuis, Erik T.; Chevallier, Matthieu; De Mora, Lee; Dessert, Morgane; Dunne, John P.; Ellingsen, Ingrid H.; Feldman, Doron; Frouin, Robert; Gehlen, Marion; Gorgues, Thomas; Ilyina, Tatiana; Jin, Meibing; John, Jasmin G.; Lawrence, Jon; Manizza, Manfredi; Menkes, Christophe E.; Perruche, Coralie; Le Fouest, Vincent; Popova, Ekaterina E.; Romanou, Anastasia; Samuelsen, Annette; Schwinger, Jorg; Seferian, Roland; Stock, Charles A.; Tjiputra, Jerry; Tremblay, Bruno; Ueyoshi, Kyozo; Vichi, Marcello; Yool, Andrew; Zhang, Jinlun.
The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Z(eu)), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Z(eu) throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced)...
Tipo: Text
Ano: 2016 URL: https://archimer.ifremer.fr/doc/00373/48441/69564.pdf
Imagem não selecionada

Imprime registro no formato completo
Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production ArchiMer
Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L..
Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout...
Tipo: Text
Ano: 2017 URL: https://archimer.ifremer.fr/doc/00662/77397/78994.pdf
Imagem não selecionada

Imprime registro no formato completo
A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0 ArchiMer
Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-buchholz, Andrea; Buechner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D..
Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0...
Tipo: Text
Ano: 2018 URL: https://archimer.ifremer.fr/doc/00438/54988/75118.pdf
Registros recuperados: 8
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional