Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 5
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Anthropogenic perturbation of the carbon fluxes from land to ocean ArchiMer
Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; Mackenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert, Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-sala, Angela; Godderis, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; Larowe, Douglas E.; Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin.
A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr(-1) since pre-industrial times, mainly owing to enhanced...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00264/37508/36764.pdf
Imagem não selecionada

Imprime registro no formato completo
Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1) ArchiMer
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph.
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon...
Tipo: Text
Ano: 2016 URL: https://archimer.ifremer.fr/doc/00383/49411/49882.pdf
Imagem não selecionada

Imprime registro no formato completo
Variability of the Ocean Carbon Cycle in Response to the North Atlantic Oscillation ArchiMer
Keller, Kathrin M.; Joos, Fortunat; Raible, Christoph C.; Cocco, Valentina; Froelicher, Thomas L.; Dunne, John P.; Gehlen, Marion; Bopp, Laurent; Orr, James C.; Tjiputra, Jerry; Heinze, Christoph; Segschneider, Joachim; Roy, Tilla; Metzl, Nicolas.
Climate modes such as the North Atlantic Oscillation (NAO), representing internal variability of the climate system, influence the ocean carbon cycle and may mask trends in the sink of anthropogenic carbon. Here, utilising control runs of six fully coupled Earth System Models, the response of the ocean carbon cycle to the NAO is quantified. The dominating response, a seesaw pattern between the subtropical gyre and the subpolar Northern Atlantic, is instantaneous (<3 months) and dynamically consistent over all models and with observations for a range of physical and biogeochemical variables. All models show asymmetric responses to NAO+ and NAO− forcing, implying non-linearity in the connection between NAO and the ocean carbon cycle. However, model...
Tipo: Text Palavras-chave: North Atlantic Oscillation; Carbon cycle; Ocean biogeochemistry; Climate modeling; Ocean-atmosphere interaction.
Ano: 2012 URL: https://archimer.ifremer.fr/doc/00140/25166/23272.pdf
Imagem não selecionada

Imprime registro no formato completo
Long-term surface pCO(2) trends from observations and models ArchiMer
Tjiputra, Jerry F.; Olsen, Are; Bopp, Laurent; Lenton, Andrew; Pfeil, Benjamin; Roy, Tilla; Segschneider, Joachim; Totterdell, Ian; Heinze, Christoph.
We estimate regional long-term surface ocean pCO(2) growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO(2) growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO(2) growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to...
Tipo: Text Palavras-chave: Surface pCO(2); Ocean CO2 sinks; Earth system models; CMIP5 projections; Ocean biogeochemistry.
Ano: 2014 URL: https://archimer.ifremer.fr/doc/00291/40228/38691.pdf
Imagem não selecionada

Imprime registro no formato completo
Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2) ArchiMer
Tjiputra, Jerry F.; Schwinger, Jorg; Bentsen, Mats; Moree, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yan-chun; Olivie, Dirk; Seland, Oyvind; Schulz, Michael.
The ocean carbon cycle is a key player in the climate system through its role in regulating the atmospheric carbon dioxide concentration and other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospheric component, leading to a direct feedback to the climate. Atmospheric nitrogen deposition and additional riverine inputs of other biogeochemical tracers have recently been...
Tipo: Text
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00676/78837/81097.pdf
Registros recuperados: 5
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional