Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 5
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves ArchiMer
Ardhuin, Fabrice; Brandt, Peter; Gaultier, Lucile; Donlon, Craig; Battaglia, Alessandro; Boy, François; Casal, Tania; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean Marc; De Witte, Erik; Dibarboure, Gerald; Engen, Geir; Johnsen, Harald; Lique, Camille; Lopez-dekker, Paco; Maes, Christophe; Martin, Adrien; Marié, Louis; Menemenlis, Dimitris; Nouguier, Frederic; Peureux, Charles; Rampal, Pierre; Ressler, Gerhard; Rio, Marie-helene; Rommen, Bjorn; Shutler, Jamie D.; Suess, Martin; Tsamados, Michel; Ubelmann, Clement; Van Sebille, Erik; Van Den Oever, Martin; Stammer, Detlef.
The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a...
Tipo: Text Palavras-chave: Ocean current; Tropics; Arctic; Doppler; Altimetry; Sea state; Remote sensing; Ocean waves.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00498/60964/64372.pdf
Imagem não selecionada

Imprime registro no formato completo
SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and Polar Seas ArchiMer
Gommenginger, Christine; Chapron, Bertrand; Hogg, Andy; Buckingham, Christian; Fox-kemper, Baylor; Eriksson, Leif; Soulat, Francois; Ubelmann, Clément; Ocampo-torres, Francisco; Nardelli, Bruno Buongiorno; Griffin, David; Lopez-dekker, Paco; Knudsen, Per; Andersen, Ole; Stenseng, Lars; Stapleton, Neil; Perrie, William; Violante-carvalho, Nelson; Schulz-stellenfleth, Johannes; Woolf, David; Isern-fontanet, Jordi; Ardhuin, Fabrice; Klein, Patrice; Mouche, Alexis; Pascual, Ananda; Capet, Xavier; Hauser, Daniele; Stoffelen, Ad; Morrow, Rosemary; Aouf, Lotfi; Breivik, Øyvind; Fu, Lee-lueng; Johannessen, Johnny A.; Aksenov, Yevgeny; Bricheno, Lucy; Hirschi, Joel; Martin, Adrien Ch; Martin, Adiran P; Nurser, George; Polton, Jeff; Wolf, Judith; Johnsen, Harald; Soloviev, Alexander; Jacobs, Gregg A.; Collard, Fabrice; Groom, Steve; Kudryavtsev, Vladimir; Wilkin, John; Navarro, Victor; Babanin, Alex; Martin, Matthew; Siddorn, John; Saulter, Andrew; Rippeth, Tom; Emery, Bill; Maximenko, Nikolai; Romeiser, Roland; Graber, Hans; Azcarate, Aida Alvera; Hughes, Chris W.; Vandemark, Doug; Silva, Jose Da; Leeuwen, Peter Jan Van; Naveira-garabato, Alberto; Gemmrich, Johannes; Mahadevan, Amala; Marquez, Jose; Munro, Yvonne; Doody, Sam; Burbidge, Geoff.
High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer...
Tipo: Text Palavras-chave: Satellite; Air sea interactions; Upper ocean dynamics; Submesoscale; Coastal; Marginal ice zone; Radar; Along-track interferometry.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00510/62121/66325.pdf
Imagem não selecionada

Imprime registro no formato completo
An Ocean Wind Doppler Model Based on the Generalized Curvature Ocean Surface Scattering Model ArchiMer
Said, Faozi; Johnsen, Harald; Chapron, Bertrand; Engen, Geir.
A Doppler centroid D-C model based on the generalized curvature ocean surface scattering model (generalized curvature model or GCM) is presented. Two key features are included in this model: a skewness-related phase coefficient based on empirical skewness coefficients of sea-surface-slope probability density function (pdf) for wind speed less than 10 m/s and effects from wave breaking for wind speed greater than 10 m/s. Simulated D-c values are exclusively compared with the empirical geophysical Doppler model function named CDOP, for hh and vv polarizations, various wind conditions, and incidence angles. Good agreement is found overall between CDOP and simulated D-C values. The overall bias for simulated Dc-vv with and without skewness are 2.63 versus...
Tipo: Text Palavras-chave: Doppler measurements; Geophysical measurement techniques; Sea surface; Synthetic aperture radar (SAR).
Ano: 2015 URL: http://archimer.ifremer.fr/doc/00283/39411/39116.pdf
Imagem não selecionada

Imprime registro no formato completo
Ocean doppler anomaly and ocean surface current from Sentinel 1 tops mode ArchiMer
Johnsen, Harald; Nilsen, Vegard; Engen, Geir; Mouche, Alexis; Collard, Fabrice.
Processing and analysis of Doppler information from Sentinel 1A Interferometric Wide (IW) and Extra Wide (EW) modes are performed for assessing the capabilities of mapping ocean surface current field. Data from Agulhas (South-Africa) and Norwegian Coast are used in combination with numerical models, higher-order satellite products, and Lagrangian drifters. Results show strong Doppler signal and dynamics from coastal areas caused by a mixture of surface current and wind/wave induced drifts at a spatial resolution of around 2 km2 in IW mode and 4km2 in EW mode. Doppler values of up to 70 Hz are observed, corresponding to a surface drift velocity of 3.5 m/s. The Sentinel 1 retrieved surface current component is in reasonable agreement with the circulation...
Tipo: Text Palavras-chave: Doppler effect; Sea surface; Sea measurements; Ocean temperature; Surface treatment; Antennas.
Ano: 2016 URL: http://archimer.ifremer.fr/doc/00356/46713/46589.pdf
Imagem não selecionada

Imprime registro no formato completo
Onto a Skewness Approach to the Generalized Curvature Ocean Surface Scattering Model ArchiMer
Said, Faozi; Johnsen, Harald; Nouguier, Frederic; Chapron, Bertrand; Engen, Geir.
The generalized curvature ocean surface scattering model [general curvature model (GCM)] is extended and revisited. Two key steps are addressed in this paper, namely, a necessary sea surface spectrum undressing procedure and the inclusion of a skewness phase-related component. Normalized radar cross-section (NRCS) simulations are generated at C-band for various wind conditions, polarizations, and incidence angles. Results are compared with CMOD5.n. Although the sea surface spectrum undressing procedure is a necessary step, the overall NRCS dynamic is notably affected only in low wind conditions (<= 5 m/s). The inclusion of the skewness phase-related component makes the most impact to the NRCS dynamic where the upwind/downwind asymmetry is clearly...
Tipo: Text Palavras-chave: Geophysical measurements; Radar cross section; Remote sensing; Sea surface; Surface waves.
Ano: 2017 URL: http://archimer.ifremer.fr/doc/00409/52013/52725.pdf
Registros recuperados: 5
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional