Retinol binding proteins (RBPs) are transport proteins that act by solubilizing and protecting their labile ligands in aqueous spaces. In addition, RBPs have diverse and specific functions in regulating the disposition, metabolism and activities of retinoids. Elevated levels of retinol-binding protein 4 (RBP4) are observed in cardiovascular disease conditions, which prompts it as a potential drug target. Therefore, computational approach methods were implemented herein to design a novel inhibitor for RBP4. Crystal structure (2wq9) of RBP4 was retrieved and investigated to locate retinol binding site residues (Lys29, Pro32, Leu35, Phe36, Leu37, Phe45, Ala55, Ala57, Met73, Val74, Gly75, Met88, Try90, His104, Gln117, Arg121, Try133, Phe135, Phe137). Five... |