Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Reconciling Observation and Model Trends in North Atlantic Surface CO2 ArchiMer
Lebehot, Alice D.; Halloran, Paul Richard; Watson, Andrew J.; Mcneall, Doug; Ford, David A.; Landschuetzer, Peter; Lauvset, Siv K.; Schuster, Ute.
The North Atlantic Ocean is a region of intense uptake of atmospheric CO2. To assess how this CO2 sink has evolved over recent decades, various approaches have been used to estimate basin-wide uptake from the irregularly sampled in situ CO2 observations. Until now, the lack of robust uncertainties associated with observation-based gap-filling methods required to produce these estimates has limited the capacity to validate climate model simulated surface ocean CO2 concentrations. After robustly quantifying basin-wide and annually varying interpolation uncertainties using both observational and model data, we show that the North Atlantic surface ocean fugacity of CO2 (fCO(2-ocean)) increased at a significantly slower rate than that simulated by the latest...
Tipo: Text
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00675/78721/81005.pdf
Imagem não selecionada

Imprime registro no formato completo
A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) - have we hit the wall? ArchiMer
Gregor, Luke; Lebehot, Alice D.; Kok, Schalk; Monteiro, Pedro M. Scheel.
Over the last decade, advanced statistical inference and machine learning have been used to fill the gaps in sparse surface ocean CO2 measurements (Rodenbeck et al., 2015). The estimates from these methods have been used to constrain seasonal, interannual and decadal variability in sea-air CO2 fluxes and the drivers of these changes (Landschutzer et al., 2015, 2016; Gregor et al., 2018). However, it is also becoming clear that these methods are converging towards a common bias and root mean square error (RMSE) boundary: "the wall", which suggests that pCO(2) estimates are now limited by both data gaps and scale-sensitive observations. Here, we analyse this problem by introducing a new gap-filling method, an ensemble average of six machine-learning models...
Tipo: Text
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00676/78797/81035.pdf
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional