|
|
Scala, A.; Lorito, S.; Romano, F.; Murphy, Shane; Selva, J.; Basili, R.; Babeyko, A.; Herrero, A.; Hoechner, A.; Lovholt, F.; Maesano, F. E.; Perfetti, P.; Tiberti, M. M.; Tonini, R.; Volpe, M.; Davies, G.; Festa, G.; Power, W.; Piatanesi, A.; Cirella, A.. |
The complexity of coseismic slip distributions influences the tsunami hazard posed by local and, to a certain extent, distant tsunami sources. Large slip concentrated in shallow patches was observed in recent tsunamigenic earthquakes, possibly due to dynamic amplification near the free surface, variable frictional conditions or other factors. We propose a method for incorporating enhanced shallow slip for subduction earthquakes while preventing systematic slip excess at shallow depths over one or more seismic cycles. The method uses the classic k(-2) stochastic slip distributions, augmented by shallow slip amplification. It is necessary for deep events with lower slip to occur more often than shallow ones with amplified slip to balance the long-term... |
Tipo: Text |
Palavras-chave: Tsunamis; Seismic-probabilistic tsunami hazard assessment; Tsunami source models; Stochastic seismic slip distributions. |
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00619/73097/72233.pdf |
| |