Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Using Ontology Fingerprints to Evaluate Genome-wide Association Results Nature Precedings
Lam Tsoi; Michael Boehnke; Richard Klein; Jim Zheng.
We describe an approach to characterize genes or phenotypes via ontology fingerprints which are composed of Gene Ontology (GO) terms overrepresented among those PubMed abstracts linked to the genes or phenotypes. We then quantify the biological relevance between genes and phenotypes by comparing their ontology fingerprints to calculate a similarity score. We validated this approach by correctly identifying genes belong to their biological pathways with high accuracy, and applied this approach to evaluate GWA study by ranking genes associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, LPL, and CETP for HDL; LDLR, APOE and APOB for...
Tipo: Presentation Palavras-chave: Genetics & Genomics; Bioinformatics.
Ano: 2009 URL: http://precedings.nature.com/documents/3513/version/1
Imagem não selecionada

Imprime registro no formato completo
Using Ontology Fingerprints to evaluate genome-wide association study results Nature Precedings
Lam C. Tsoi; Michael Boehnke; Richard L. Klein; W. Jim Zheng.
We describe an approach to characterize genes or phenotypes via ontology fingerprints which are composed of Gene Ontology (GO) terms overrepresented among those PubMed abstracts linked to the genes or phenotypes. We then quantify the biological relevance between genes and phenotypes by comparing their ontology fingerprints to calculate a similarity score. We validated this approach by correctly identifying genes belong to their biological pathways with high accuracy, and applied this approach to evaluate GWA study by ranking genes associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, LPL, and CETP for HDL; LDLR, APOE and APOB for...
Tipo: Manuscript Palavras-chave: Genetics & Genomics; Bioinformatics.
Ano: 2009 URL: http://precedings.nature.com/documents/3615/version/1
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional