|
|
|
|
|
Waelbroeck, Claire; Lougheed, Bryan C.; Vazquez Riveiros, Natalia; Missiaen, Lise; Pedro, Joel; Dokken, Trond; Hajdas, Irka; Wacker, Lukas; Abbott, Peter; Dumoulin, Jean-pascal; Thil, François; Eynaud, Frédérique; Rossignol, Linda; Fersi, Wiem; Albuquerque, Ana Luiza; Arz, Helge; Austin, William E. N.; Came, Rosemarie; Carlson, Anders E.; Collins, James A.; Dennielou, Bernard; Desprat, Stéphanie; Dickson, Alex; Elliot, Mary; Farmer, Christa; Giraudeau, Jacques; Gottschalk, Julia; Henderiks, Jorijntje; Hughen, Konrad; Jung, Simon; Knutz, Paul; Lebreiro, Susana; Lund, David C.; Lynch-stieglitz, Jean; Malaizé, Bruno; Marchitto, Thomas; Martínez-méndez, Gema; Mollenhauer, Gesine; Naughton, Filipa; Nave, Silvia; Nürnberg, Dirk; Oppo, Delia; Peck, Victoria; Peeters, Frank J. C.; Penaud, Aurélie; Portilho-ramos, Rodrigo Da Costa; Repschläger, Janne; Roberts, Jenny; Rühlemann, Carsten; Salgueiro, Emilia; Sanchez Goni, Maria Fernanda; Schönfeld, Joachim; Scussolini, Paolo; Skinner, Luke C.; Skonieczny, Charlotte; Thornalley, David; Toucanne, Samuel; Rooij, David Van; Vidal, Laurence; Voelker, Antje H. L.; Wary, Mélanie; Weldeab, Syee; Ziegler, Martin. |
Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core... |
Tipo: Text |
|
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00513/62429/66712.pdf |
| |
|
|
Waelbroeck, Claire; Pichat, Sylvain; Bohm, Evelyn; Lougheed, Bryan C.; Faranda, Davide; Vrac, Mathieu; Missiaen, Lise; Vazquez Riveiros, Natalia; Burckel, Pierre; Lippold, Joerg; Arz, Helge W.; Dokken, Trond; Thil, Francois; Dapoigny, Arnaud. |
Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e., Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti / Ca). New sedimentary Pa / Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa / Th and ln(Ti/Ca) signals. We show that decreased water mass... |
Tipo: Text |
|
Ano: 2018 |
URL: http://archimer.ifremer.fr/doc/00460/57126/59040.pdf |
| |
|
|
Bengtson, Shannon A.; Menviel, Laurie C.; Meissner, Katrin J.; Missiaen, Lise; Peterson, Carlye D.; Lisiecki, Lorraine E.; Joos, Fortunat. |
The last time in Earth's history when high latitudes were warmer than during pre-industrial times was the last interglacial period (LIG, 129–116 ka BP). Since the LIG is the most recent and best documented interglacial, it can provide insights into climate processes in a warmer world. However, some key features of the LIG are not well constrained, notably the oceanic circulation and the global carbon cycle. Here, we use a new database of LIG benthic δ13C to investigate these two aspects. We find that the oceanic mean δ13C was ∼ 0.2 ‰ lower during the LIG (here defined as 125–120 ka BP) when compared to the Holocene (7–2 ka BP). A lower terrestrial carbon content at the LIG than during the Holocene could have led to both lower oceanic δ13C and atmospheric... |
Tipo: Text |
|
Ano: 2021 |
URL: https://archimer.ifremer.fr/doc/00682/79397/81928.pdf |
| |
|
|
|