|
|
|
|
|
Kutterolf, Steffen; Schindlbeck, Julie C.; Scudder, Rachel P.; Murray, Richard W.; Pickering, Kevin T.; Freundt, Armin; Labanieh, Shasa; Heydolph, Ken; Saito, Sanny; Naruse, Hajime; Underwood, Michael B.; Wu, Huaichun. |
During IODP Expedition 322, an interval of Late Miocene (7.6 to ∼9.1 Ma) tuffaceous and volcaniclastic sandstones was discovered in the Shikoku Basin (Site C0011B), Nankai region. This interval consists of bioturbated silty claystone including four 1–7 m thick interbeds of tuffaceous sandstones (TST) containing 57–82% (by volume) pyroclasts. We use major and trace element glass compositions, as well as radiogenic isotope compositions, to show that the tuffaceous sandstones beds derived from single eruptive events, and that the majority (TST 1, 2, 3a) came from different eruptions from a similar source region, which we have identified to be the Japanese mainland, 350 km away. In particular, diagnostic trace element ratios (e.g., Th/La, Sm/La, Rb/Hf, Th/Nb,... |
Tipo: Text |
|
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00191/30239/28664.pdf |
| |
|
|
D'Hondt, Steven; Inagaki, Fumio; Zarikian, Carlos Alvarez; Abrams, Lewis J.; Dubois, Nathalie; Engelhardt, Tim; Evans, Helen; Ferdelman, Timothy; Gribsholt, Britta; Harris, Robert N.; Hoppie, Bryce W.; Hyun, Jung-ho; Kallmeyer, Jens; Kim, Jinwook; Lynch, Jill E.; Mckinley, Claire C.; Mitsunobu, Satoshi; Morono, Yuki; Murray, Richard W.; Pockalny, Robert; Sauvage, Justine; Shimono, Takaya; Shiraishi, Fumito; Smith, David C.; Smith-duque, Christopher E.; Spivack, Arthur J.; Steinsbu, Bjorn Olav; Suzuki, Yohey; Szpak, Michal; Toffin, Laurent; Uramoto, Goichiro; Yamaguchi, Yasuhiko T.; Zhang, Guo-liang; Zhang, Xiao-hua; Ziebis, Wiebke. |
The depth of oxygen penetration into marine sediments differs considerably from one region to another. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor. In areas with low sedimentary respiration, O2 penetrates much deeper but the depth to which microbial communities persist was previously unknown. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the... |
Tipo: Text |
|
Ano: 2015 |
URL: https://archimer.ifremer.fr/doc/00255/36658/35265.pdf |
| |
|
|
Tada, Ryuji; Irino, Tomohisa; Ikehara, Ken; Karasuda, Akinori; Sugisaki, Saiko; Xuan, Chuang; Sagawa, Takuya; Itaki, Takuya; Kubota, Yoshimi; Lu, Song; Seki, Arisa; Murray, Richard W.; Alvarez-zarikian, Carlos; Anderson, William T., Jr.; Bassetti, Maria-angela; Brace, Bobbi J.; Clemens, Steven C.; Da Costa Gurgel, Marcio H.; Dickens, Gerald R.; Dunlea, Ann G.; Gallagher, Stephen J; Giosan, Liviu; Henderson, Andrew C. G.; Holbourn, Ann E.; Kinsley, Christopher W.; Lee, Gwang Soo; Lee, Kyung Eun; Lofi, Johanna; Lopes, Christina I. C. D.; Saavedra-pellitero, Mariem; Peterson, Larry C.; Singh, Raj K.; Toucanne, Samuel; Wan, Shiming; Zheng, Hongbo; Ziegler, Martin. |
The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter-to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as similar to 1.5 Ma based on the result of Ocean Drilling Program... |
Tipo: Text |
Palavras-chave: Quaternary sediments; Japan Sea; Inter-site correlation; High-resolution age model; IODP; Expedition 346; U1424; U1425; U1426; U1430. |
Ano: 2018 |
URL: https://archimer.ifremer.fr/doc/00437/54817/56292.pdf |
| |
|
|
|