|
|
|
|
|
Prudente,Victor H. R.; Silva,Bruno B. da; Johann,Jerry A.; Mercante,Erivelto; Oldoni,Lucas V.. |
ABSTRACT: The traditional per-pixel classification methods consider only spectral information, and may be limited. Object-based classifiers, however, also consider shape and texture, firstly segmenting the image, and then classifying individual objects. Thus, a Geographic Object-Based Image Analysis (GEOBIA) was compared in conjunction with data mining techniques and a traditional per-pixel method. A cut of Landsat-8, bands 2 to 7, orbit/point 223/77, located between the municipalities of Cascavel, Corbélia, Cafelândia and Tupãssi, in the west part of the state of Paraná, from 12/18/2013 was used. In the GEOBIA approach was realized image segmentation, spatial and spectral attribute extraction, and classification using the decision tree supervised... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: GeoDMA; Data mining; Decision tree. |
Ano: 2017 |
URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000501015 |
| |
|
|
Cattani,Carlos E. V.; Garcia,Murilo R.; Mercante,Erivelto; Johann,Jerry A.; Correa,Marcus M.; Oldoni,Lucas V.. |
ABSTRACT Remote sensing applications in agriculture are presented as a very promising reality, but research is still needed for the correct use of spectral data. The objective of this study was to evaluate the spectral-temporal patterns of eleven wheat cultivars (Triticum aestivum L.). The experiment was conducted in Cascavel, PR, in the year 2014. With the help of the GreenSeeker and FieldSpec 4 terrestrial sensors, spectral signatures were determined and the temporal profiles of the Normalized Difference Vegetation Index (NDVI) were created. Statistical differences between wheat cultivars were analysed using analysis of variance (ANOVA) and Scott-Knott test. Grain yields obtained with INSEY (In-Season Estimate of Yield) factors were correlated. NDVI... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Vegetation index; Remote sensing; Growth stage. |
Ano: 2017 |
URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662017001100769 |
| |
|
|
Oldoni,Lucas V.; Cattani,Carlos E. V.; Mercante,Erivelto; Johann,Jerry A.; Antunes,João F. G.; Almeida,Luiz. |
ABSTRACT In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Decision tree; Random forest; NDVI temporal metrics. |
Ano: 2019 |
URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019001200952 |
| |
|
|
|