Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Analyzing genotype-by-environment interaction using curvilinear regression Scientia Agricola
Pereira,Dulce Gamito Santinhos; Rodrigues,Paulo Canas; Mejza,Iwona; Mejza,Stanislaw; Mexia,João Tiago.
In the context of multi-environment trials, where a series of experiments is conducted across different environmental conditions, the analysis of the structure of genotype-by-environment interaction is an important topic. This paper presents a generalization of the joint regression analysis for the cases where the response (e.g. yield) is not linear across environments and can be written as a second (or higher) order polynomial or another non-linear function. After identifying the common form regression function for all genotypes, we propose a selection procedure based on the adaptation of two tests: (i) a test for parallelism of regression curves; and (ii) a test of coincidence for those regressions. When the hypothesis of parallelism is rejected,...
Tipo: Info:eu-repo/semantics/article Palavras-chave: Scheffé multiple comparison method; Joint regression analysis; Test for parallelism; Test of coincidence.
Ano: 2012 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000600003
Imagem não selecionada

Imprime registro no formato completo
A comparison between Joint Regression Analysis and the Additive Main and Multiplicative Interaction model: the robustness with increasing amounts of missing data Scientia Agricola
Rodrigues,Paulo Canas; Pereira,Dulce Gamito Santinhos; Mexia,João Tiago.
This paper joins the main properties of joint regression analysis (JRA), a model based on the Finlay-Wilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction (AMMI) model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of randomly selected missing data. The application is made using a data set from a breeding program of durum wheat (Triticum turgidum L., Durum Group) conducted in Portugal. The results of the two models result in similar dominant cultivars (JRA) and winner of mega-environments (AMMI) for the same environments. However, JRA had more stable results with the increase in the incidence rates of missing values.
Tipo: Info:eu-repo/semantics/article Palavras-chave: AMMI models; Genotype by environment interaction; Joint regression analysis; Missing values; Durum wheat.
Ano: 2011 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000600012
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional