Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 3
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Future change in ocean productivity: Is the Arctic the new Atlantic? ArchiMer
Yool, A.; Popova, E. E.; Coward, A. C..
One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution...
Tipo: Text Palavras-chave: Marine; Ocean; Biogeochemistry; Arctic; Atlantic; Future.
Ano: 2015 URL: https://archimer.ifremer.fr/doc/00332/44367/43972.pdf
Imagem não selecionada

Imprime registro no formato completo
Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean ArchiMer
Yool, A.; Popova, E. E.; Coward, A. C.; Bernie, D.; Anderson, T. R..
Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2) emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and - via ocean acidification - chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00157/26837/24956.pdf
Imagem não selecionada

Imprime registro no formato completo
MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies ArchiMer
Yool, A.; Popova, E. E.; Anderson, T. R..
MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C : N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00165/27666/25842.pdf
Registros recuperados: 3
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional