Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 4
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
On the status of the Michaelis-Menten equation and its implications for enzymology Nature Precedings
Sosale Chandrasekhar.
The Michaelis-Menten equation (MME) is considered to be the fundamental equation describing the rates of enzyme-catalysed reactions, and thus the 'physicochemical key' to understanding all life processes. It is the basis of the current view of enzymes as generally proteinaceous macromolecules that bind the substrate reversibly at the active site, and convert it to the product in a relatively slow overall sequence of bonding changes ('turnover'). The manifested 'saturation kinetics', by which the rate of the enzymic reaction (essentially) increases linearly with the substrate concentration ([S]) at low [S] but reaches a plateau at high [S], is apparently modelled by the MME. However, it is argued herein...
Tipo: Manuscript Palavras-chave: Biotechnology; Chemistry; Evolutionary Biology.
Ano: 2008 URL: http://precedings.nature.com/documents/1637/version/1
Imagem não selecionada

Imprime registro no formato completo
Kinetic resolution of racemates under chiral catalysis: connecting the dots Nature Precedings
Sosale Chandrasekhar.
The current theory of the titled phenomenon is apparently based on an inconsistent use of concentration units, as employed in the derivation of the fundamental equations. Thus, manifestly, whilst the relation between extent of conversion and e.e. is derived with mole fractions, the succeeding kinetic equations employ units of molarity. This invalidates the derivation in the general case. Fortuitously, however, it is applicable in the majority of simple cases, wherein the total number of moles involved in the reaction remains constant. Herein is presented a rigorous approach which is generally valid.
Tipo: Manuscript Palavras-chave: Chemistry.
Ano: 2012 URL: http://precedings.nature.com/documents/7127/version/1
Imagem não selecionada

Imprime registro no formato completo
Non-linear Effects in Asymmetric Catalysis: Whys and Wherefores Nature Precedings
Sosale Chandrasekhar.
It is argued that the titled non-linear effects (NLE) may arise whenever the order of the reaction in the chiral catalyst in greater than 1. In a fundamental departure from previous approaches, this is mathematically elaborated for the second order case. (NLE may also be observed if the chiral catalyst forms non-reacting dimers in a competing equilibrium; practically, however, this implies the in situ resolution of the catalyst.) The amplification of enantiomeric excess by NLE implies a relative (although modest) reduction in the entropy of mixing. The consequent increase in free energy apparently indicates a non-equilibrium process. It is suggested, based on arguments involving the chemical potential, that kinetically-controlled reactions lead to a state...
Tipo: Manuscript Palavras-chave: Chemistry.
Ano: 2012 URL: http://precedings.nature.com/documents/6947/version/1
Imagem não selecionada

Imprime registro no formato completo
A reassessment of the Carnot cycle and the concept of entropy Nature Precedings
Sosale Chandrasekhar.
It is argued that the Carnot cycle is a highly inaccurate representation of a steam engine, and that the net work obtained in its operation would be zero. This conclusion is also supported by an elementary mathematical approach, which re-examines the work done in the four individual steps of the cycle. An important consequence of this is that the concept of entropy, originally proposed on the basis of the Carnot theorem, may not be a fundamentally valid thermodynamic quantity. Also, the experimental approach generally adopted in the determination of entropy is questionable, and the importance of increasing randomness in natural processes not universally valid. In fact, a more viable basis, at least vis-à-vis chemical reactions, appears to be the...
Tipo: Manuscript Palavras-chave: Chemistry.
Ano: 2008 URL: http://precedings.nature.com/documents/1852/version/1
Registros recuperados: 4
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional